
AFRL-IF-WP-TR-2001-1531

VERY HIGH SPEED INTEGRATED CIRCUITS
(VHISC) HARDWARE DESCRIPTION
LANGUAGE (VHDL) INTERACTIVE
VALIDATION ALCHEMY (VIVA)
Technology and Software for Semiautomated, High
Fidelity Validation of VHDL-Related Tools

Patrick Gallagher, Robert Newshutz, Sathyanarayanan Seshadri,
Senjeev Thiyagarajan, and John Willis

FTL Systems, Inc.
1620 Greenview Dr. SW
Rochester, MN 55902-1034

MAY 2001

FINAL REPORT FOR 09 JULY 1996 – 31 MAY 2001

INFORMATION DIRECTORATE
AIR FORCE RESEARCH LABORATORY
AIR FORCE MATERIEL COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7334

Approved for public release; distribution is unlimited.

Report Documentation Page

Report Date
01MAY2001

Report Type
N/A

Dates Covered (from... to)
09JUL1996 - 31MAY2001

Title and Subtitle
Very High Speed Integrated Circuits (VHISC) Hardware
Description Language (VHDL) Interactive Validation
Alchemy (VIVA). Technology and Software for
Semiautomated, High Fidelity Validation of
VHDL-Related Tools

Contract Number

Grant Number

Program Element Number

Author(s)
Gallagher, Patrick; Newshutz, Robert; Seshadri,
Sathyanarayanan; Thiyagarajan, Senjeev; Willis, John

Project Number

Task Number

Work Unit Number

Performing Organization Name(s) and Address(es)
FTL Systems, Inc. 1620 Greenview Drive., S.W.
Rochester, MN 55902-1034

Performing Organization Report Number

Sponsoring/Monitoring Agency Name(s) and
Address(es)
Information Directorate Air Force Research Laboratory
Air Force Materiel Command Wright-Patterson AFB, OH
45433-7334

Sponsor/Monitor’s Acronym(s)

Sponsor/Monitor’s Report Number(s)

Distribution/Availability Statement
Approved for public release, distribution unlimited

Supplementary Notes
The original document contains color images.

Abstract

Subject Terms

Report Classification
unclassified

Classification of this page
unclassified

Classification of Abstract
unclassified

Limitation of Abstract
SAR

Number of Pages
68

NOTICE

USING GOVERNMENT DRAWINGS, SPECIFICATIONS, OR OTHER DATA
INCLUDED IN THIS DOCUMENT FOR ANY PURPOSE OTHER THAN
GOVERNMENT PROCUREMENT DOES NOT IN ANY WAY OBLIGATE THE US
GOVERNMENT. THE FACT THAT THE GOVERNMENT FORMULATED OR
SUPPLIED THE DRAWINGS, SPECIFICATIONS, OR OTHER DATA DOES NOT
LICENSE THE HOLDER OR ANY OTHER PERSON OR CORPORATION; OR
CONVEY ANY RIGHTS OR PERMISSION TO MANUFACTURE, USE, OR SELL ANY
PATENTED INVENTION THAT MAY RELATE TO THEM.

THIS REPORT IS RELEASABLE TO THE NATIONAL TECHNICAL
INFORMATION SERVICE (NTIS). AT NTIS, IT WILL BE AVAILABLE

TO THE GENERAL PUBLIC, INCLUDING FOREIGN NATIONS.

THIS TECHNICAL REPORT HAS BEEN REVIEWED AND IS
APPROVED FOR PUBLICATION

_:'1Iru~:~l.-<-'/ ?/AA.(~t~ ~

[monitor signature block]

..

{3';:;;;1.~~~ i';;ck]

"-

~t:::::~

This report is published in the interest of scientific and technical information exchange and does
not constitute approval or disapproval of its ideas or findings.

Do not return copies of this report unless contractual obligations or notice on a specific
document requires its rerum.

i

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204,
Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not
display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YY) 2. REPORT TYPE 3. DATES COVERED (From - To)

May 2001 Final 07/09/1996 – 05/31/2001
5a. CONTRACT NUMBER

F33615-96-C-1909
5b. GRANT NUMBER

4. TITLE AND SUBTITLE

VERY HIGH SPEED INTEGRATED CIRCUITS (VHISC) HARDWARE
DESCRIPTION LANGUAGE (VHDL) INTERACTIVE VALIDATION ALCHEMY
(VIVA)
Technology and Software for Semiautomated, High Fidelity Validation of
VHDL-Related Tools

5c. PROGRAM ELEMENT NUMBER
65502F

5d. PROJECT NUMBER

6096
5e. TASK NUMBER

40

6. AUTHOR(S)

Patrick Gallagher, Robert Newshutz, Sathyanarayanan Seshadri, Senjeev Thiyagarajan,
and John Willis

5f. WORK UNIT NUMBER

 31
8. PERFORMING ORGANIZATION

 REPORT NUMBER
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

FTL Systems, Inc.
1620 Greenview Dr. SW
Rochester, MN 55902-1034

10. SPONSORING/MONITORING
AGENCY ACRONYM(S)
AFRL/IFTA

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

INFORMATION DIRECTORATE
AIR FORCE RESEARCH LABORATORY
AIR FORCE MATERIEL COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7334

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER(S)
AFRL-IF-WP-TR-2001-1531

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES
Report contains color.
14. ABSTRACT (Maximum 200 Words)
The objective of the VIVA program was to develop a tool to generate a suite of tests to validate the compliance of Very High Speed
Integrated Circuits (VHSIC) Hardware Description Language (VHDL) tools to the standard definition. The test suite is
semiautomated to enable maximum flexibility and coverage of the language definition, thus, precluding the introduction of language
compliance errors in DoD systems designs that utilize VHDL. The approach includes lexical, syntactic semantic (analysis -time and
elaboration-time), functional, and temporal tests. The test suite will include contextual situations and capacity testing in an
interactive generation, test and analysis environment, for validating tools. The validation test generation tool development provides
a lower cost, more reliable, and maintainable means for DoD/NIST to certify tools as VHDL-compliant. The approach also shows
promise for helping automate other NIST certification tasks in the future. The tools can also be made available to VHDL vendors
who want to test their newly developed tools for VHDL compliance so they can provide higher quality products to their customers.

15. SUBJECT TERMS

VHDL, Validation tools
16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE PERSON (Monitor)

a. REPORT
Unclassified

b. ABSTRACT
Unclassified

c. THIS PAGE
Unclassified

17. LIMITATION
OF ABSTRACT:

SAR

18. NUMBER OF
PAGES

72 Michael T. Mills
19b. TELEPHONE NUMBER (Include Area Code)

(937) 255-6548 x3583

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

VIVA Final Report
USAF Contract Number F33615-96-C-1909 1

CHAPTER 1 Implementation Overview5

System Architecture 6
General Approach to Test Generation13
Test Generators for Lexical, Syntactic and Pre-Execution Semantics15
Test Generators for Liveliness16
Test Generators for Sequential Functionality17
Test Generators for Concurrent Functionality18
General Approach to Test Administration19
Organization of Subsequent Chapters21

CHAPTER 2 Interface Common to
All Test Generators 23

Interface Architecture 24
Command Line Control Flags26
Command Stream Control Flags28
Status Stream Control Flags30
File Output Requirements32
Fault Tolerance Requirements34
Test Generator Message Format36

CHAPTER 3 Test Generator Language Specifications37

Introduction to Lexical and Syntactic Specifications37
Lexical and Syntactic Specification Grammar39

Lexemes 39
Grammar 41

Specification Constraints49
Strategy Constraints 50
Kind Constraints 51
Type Constraints 52
Value Constraints 52
VIVA Final Report (Page 3)

afrl
iii

CHAPTER 4 Sequential Extrinsic Functional Test Generation53

Introduction 54
Type System 55

Ordinal value selection 55
Arithmetic value selection56
Composite value selection56

Objects 57
Subprograms--operations, functions, and procedures58
Processes and Concurrent59

Alternate Forms 59
Waveforms 59

Weaknesses 60
Deliverables 61
Future 62

VHDL-AMS 62

FTG Rules 63
FTG program structure 63
FTG rule creation 63

CHAPTER 5 VIVA Installation Guide 65

CHAPTER 6 Annotated Bibliography 67
VIVA Final Report (Page 4)

afrl
iv

CHAPTER 1 Implementation
Overview
tion
le tools
tools.

tion
ential,
such
uct the
se for

IVA’s
nerators
VIVA1 is a system for generating and administering validation of a VHDL-related tool (or tool suite). Valida
measures compliance between one or more VHDL-related standards and the tool under test. Applicab
include not only source analyzers, but also simulators, synthesis tools, formal verification tools and related

VIVA validates based on configuration and run-time inputs in order to yield run-time output. Configura
inputs to VIVA include an annotated language grammar (describing VHDL), constraints (semantic, sequ
concurrent), test strategies, and VHDL source fully specifying the functionality of VHDL-related libraries (
as standard logic). Run-time inputs adjust the specific validation regime and resources on which to cond
validation. Outputs include a summary of failed tests and optionally the full annotated stimulus and respon
any failed tests. Test file annotations provide a derivation from configuration inputs to the text of the test.

This chapter provides an overview of VIVA architecture and interfaces. Sections in this chapter describe V
system architecture, general approach to test generators, specifics four of several distinct kinds of test ge
(one per section), general approach to test administration, and the organization of subsequent chapters.

1. VHDL InteractiveValidationAlchemy (name developed by Philip A. Wilsey).
VIVA Final Report (Page 5)

afrl
1

Implementation Overview

and one
uration
le com-
e com-

ompo-
rations,
uters.
ay also
ovided

 test
System Architecture

The validation system architecture components involve a test administrator, one or more test generators
or more test sites associated with a particular test generator. Figure 1 on page 6 illustrates a typical config
of the system architecture in which both the test administrator and the test generator are located on a sing
puter. This computer corresponds via a TCP/IP network with three test sites (one running on each of thre
puters).

FIGURE 1. Example configuration of validation system architecture.

A variety of configurations other than the one shown above are possible. For smaller configurations, all c
nents may run on a single, common computer as distinct operating system processes. For larger configu
perhaps involving tens of computers, key components will be distributed onto one or more distinct comp
This architecture productively extends to several tens of computers, at which time the test administrator m
run on more than one computer. Substantially greater network bandwidth may also be needed that will pr

more than that typically offered with TCP/IP over an Ethernet.1

1. Functionality developed under Wright Laboratory Contract F33615-96-C-1909 targets configurations with multiple
site computers and multiple generators are supported, however the core administrator runs on a single computer.

Test Site

Test Site

Test Site

I

II

III

Administrator

Network

& Test
Generators

Test Administrators
Test Generator
VIVA Final Report (Page 6)

afrl

afrl
2

System Architecture

n as two
”, the

k is a
the test
distrib-
distrib-

repre-
muni-
Figure 2 on page 7 illustrates the test administrator’s architecture. Here the test administrator can be see
distinct blocks. The first block is the core test administrator, which manages the ”Graphical User Interface
“Test Administrator Database” and the spawning of all Distributed Test Administrators. The second bloc
distributed test administrator, which is associated with a test generator and manages the interfaces to
sites, the test generator and the core test administrator. The Core test administrator can spawn multiple
uted test administrator each associated with a different test generator and/or platform. What and where
uted test administrators are spawn is pre-configured in a validation system start-up file (viva.rc).

FIGURE 2. Test Administrator Architecture

As shown in Figure 3 on page 8, the distributed test administrator’s relationship to a test generators is
sented. The core test administrator will spawn off the distributed test administrator (DTA) and set up a com

Graphical User Interface

Test Administrator Database

Test
Site

Test
Site

 Core Test
Administrator

 (CTA)

Multiple DTA/TG’s

Distributed
 TA

Test
Generator
VIVA Final Report (Page 7)

afrl

afrl
3

Implementation Overview

r and
lways

ber of
. When a
se and
re then
ystem
ase and
cation interface between the two parts of the test administrator. The DTA will spawn off the test generato
test sites as pre-configured in a validation system start-up file (viva.rc). The DTA and test generator will a
reside on the same physical machine.

As part of the spawning of the test generator a communication port is set-up, in which a request for a num
tests to be generated is issued. These tests and associated files are placed in a director stated be the DTA
test is created, the test generator notifies the DTA. At this time the test is read from the file system databa
sent to a test site. The results of the test are sent back to the test generator via the DTA. The results a
examined by the test generator and reported to the DTA. If the test has no fault, it is removed from the file s
database. If there is a fault in the test results, the appropriate files are removed from the file system datab
sent to the test administrator’s database to be used at a later time.

FIGURE 3. Test Generator/Distributed Test Administrator Relationship

Test Generator

Distributed

Test Files

Annotated Test Files

Restart Context

Test Administrator
Interface with Core

Test Administrator

Local File System

Database

Command and
 Status Stream

DTA’s
File System

Access Path

Remote or Local Test Sites

Distributed Test Administrator will
remove test in the file system when tests has
no-faults or send the Annotated Test and Restart
Context to the Test Administrator’s Database
when tests has faults.
VIVA Final Report (Page 8)

afrl
4

System Architecture

a com-
le will

test and
reter

n the
etween
e tool
velop
rs that
tor via
Figure 4 on page 9 illustrates the internal architecture of a test site. As part of the spawning of the test site
munication port is set-up between the test site and the distributed test administrator. This interface modu
receive the test packets and set them up for use. The tool under test interface module will then select a
run it on the tool. This module is unique to each tool. The tool must be controlled via an interactive interp
controlled from within the application or via a graphical user interface requiring an “intercept” layer betwee
tool and user interface server by which the test site wrapper can introduce and observe communication b
the tool and tool’s user interface. Such an intercept layer involves compiled C++ code customized to th
under test’s 32-bit Windows or Motif graphical user interface implementation. It is up to the tool tester to de
this interface. The results from the tool will be parsed down to a string of keywords, phrases and characte
will allow the test generator to isolate a possible error. This string will then be sent back to the test genera
the distributed test administrator.

FIGURE 4. Test Site Architecture

 DTA/TUT Wrapper

Management for incoming

Graphical or Textual TUT

 Test Result Parsing

Tool Under Test

(TUT)

 Tests

 Interface

 Interface Input

 Interface Output
 DTA/TUT Wrapper

 TCP/IP
connection
 with the
 DTA

Test Site n
VIVA Final Report (Page 9)

afrl
5

Implementation Overview

wrap-

results,
d tools
ent to
echa-

orrectly.
ithout

bstan-

nd con-
o permit

a
stracted
e is
memory
munica-

A queue
nerator.

cesses
ten (or
d input
inistrator

and test

of like
o the test
om-
uch as

The test

e terms
lely as

”

Execution of the test sites wrapper is solely limited to platforms for which a Perl interpreter is available1. Inter-
face to such tools under test is done by customizing one or more Perl scripts to the tool interface (test site
per), as mentioned earlier.

Due to high data volumes and a desire to interactively prune test generation in response to evolving test
the preferred operating mode concurrently runs the test administrator(s), test generator(s) and wrappe
under test (test site). In order to support off-line testing, a trivialized test site may simply capture every file s
it or selective files, retaining such test cases in a file system or archival media (perhaps via an archiving m
nism such as tar or zip), and responding to the test administrator that the test was presumed to execute c
Replay of such validation suite tests may then be handled as with conventional tool validation processes. W
pruning by the trivialized test site, the validation system may readily produce test case volumes which su
tially exceed the capacity of even large archival storage systems (tens to hundreds of gigabytes).

The test administrator(s) and test site(s) communicate via rsh operating system services (on start-up) a
nected sockets once running. Rsh requires a running operating system service or daemon configured t

service to the test administrator’s computers and accounts2. Bidirectional connected sockets communicate
queue of test cases to the test site wrapper and return a queue of responses (in VIVA-specific form ab
from a tool by the test-site wrapper) to the distributed administrator requesting test case execution. Therno
assumption that the distributed test administrator and test sites share a common file system or share
address spaces (an underlying TCP/IP implementation may often use such mechanisms to increase com
tion performance, especially if the test administrator and test sites are co-located on the same computer).
of tens or hundreds of test cases may separate test generation from failure responses back to the test ge

The distributed test administrators and test generators communicate via system calls initiating a child pro
(the test generator) with specific command line arguments. Subsequent communication is via files writ
read) in the local file system and control flow commands sent via redirection of the test generator’s standar
and standard error streams. The architecture assumes that the test generator and the distributed test adm
are executing on the same computer, with closely related operating system permission configurations.

There is no assumption that both the core test administrator, distributed test administrator/test generator
sites are operating on the same computer architecture or operating system. Test sites aregroupedwith a test gen-
erator and platform of test. This is not to say that the test generator and test site must be on a platform
characteristics, but all the test sites associated with that test generator These parameters are delivered t
administrator via theviva.rc start-up file or graphical user interface. For example, variations may include c
puter architecture variations (such as SPARC Version 8 and Version 9), operating system variations (s
SunOS 4.1.4 versus Solaris 2.5.1), storage configurations or the presence of alternative tool versions.

1. Note that the Perl interpreter is not developed or deliverable as part of this project and thus is subject to any licens
specified by the Perl provider. Perl is generally available without cost and is aggregated on the distribution media so
a convenience to those receiving the distribution.

2. Note that the test administrator’s account has no required relationship to NT’s default configuration “administrator
account. Any account with required permissions is sufficient.
VIVA Final Report (Page 10)

afrl
6

System Architecture

valida-
cation

Motif
X or

tent
e tape
require

ification
nOS,

d
uding

on can
fic dead-
ailure
ns-

st

tted.

 license
d on the

isk of
administrator does assume that a group selected for a particular test run is potentially subject to the same
tion tests (test branches pruned by validation failures may eliminate some validation tests early in the verifi
process in order to reduce the cost of failed validations).

Execution of the test administrator and its graphical user interface requires either a 32-bit Windows or
graphical user interface and a x86/Windows NT, x86/Linux, SPARC/SunOS, SPARC/Solaris, HP PA/HP U

PowerPC/AIX computer configuration1. If all failed tests are retained in annotated form, substantial persis
storage may be required on the core test administrator’s machine in the form of disk space or on-lin
device(s). Note that the database utilized by the core test administrator is specific to this tool and does not
any external, general-purpose database management system.

Requirements for test generators depend on the team developing the specific generator. Execution of ver
test generators developed by FTL Systems, Inc. requires a x86/Windows NT, x86/Linux, SPARC/Su

SPARC/Solaris, HP PA/HP UX or PowerPC/AIX computer configurations2, whereas those generators develope
by Clifton Labs, Inc. are executable on any platform for which a Java runtime environment is available, incl

x86/Windows NT, x86/Linux, SPARC/SunOS and SPARC/Solaris computer configurations3.

Validation of a tool under test is generally a lengthy and thus expensive computing task. Extensive validati
expected to consume tens to thousands of computer / days. Completion is generally expected by a speci
line. Over tens to thousands of computer / days and intentionally broad verification conditions, individual f
events within the validation system areprobable. Thus the validation system architecture must detect and tra

parently recover from individual failure events as far as feasible4. The system architecture should remain robu
to the following failure events within the validation system:

• arbitrary failure of the tool under test,

• non-responsive or transient failures of the network,

• non-responsive failure of a test site computer,

• non-responsive failure of a tool under test,

• overly responsive failure of a tool under test (subject to operating system support),

• non-responsive failure of a test generator,

1. Note that platforms are being phase-in by demand; platforms without demand will be omitted

2. Note that test generator platforms are being phase- in guided by demand; platforms without demand may be omi

3. Note that the Java runtime system is not developed or deliverable as part of this project and thus is subject to any
terms specified by the Java vendor. Java implementations are generally available without cost and are aggregate
distribution media when permitted by the applicable license agreements.

4. Any modification to the implementation can alter this fault-tolerance and thus is done completely at the r
the party performing the modification.
VIVA Final Report (Page 11)

afrl

afrl
7

Implementation Overview

ure of
of the

ple a
Under
il that
the last

sent a
d to
r non-

tional-
an be
stem,
external
.

• overly responsive failure of a test generator (subject to operating system support), non-responsive fail
the computer running the administrator provided the persistent file system is intact and consistent as
last validation database checkpoint.

Some of the above internal failures may preclude completion of the specified validation activities (for exam
network failure may preclude access to all computers specified in the SPARC Version 8 computer group).
such failure conditions, the administrator should describe the failure to its user interface in sufficient deta
the average user can proceed with diagnosis, ideally allowing restart of the interrupted test sequence from
database checkpoint.

The administrator functionality (including its graphical user interface) and administrator file system repre
potential single points of failure. Algorithmic flaws or programming flaws within the administrator can lea
apparent internal system failure manifest at the validation system user interface as incorrect results o
responsive operation. In order to minimize such failures, the administrator interfaces and algorithmic func
ity must absolutely minimize special cases impacting its control flow. If a failure does occur the testing c
pick up from the checkpoints stored in the “Validation Status Database”. Failures in the administrator file sy
as supplied by the operating system on the computer running the administrator(s), should be addressed
to VIVA via mirrored file systems, error-correcting file systems or periodic checkpointing to backup media
VIVA Final Report (Page 12)

afrl
8

General Approach to Test Generation

nt with
ct test

or test
cution,

oduc-
lock

rval or

func-
e tool
objec-
amine
uristics
ifica-
y VIVA.

art-up)
nerally
e 13)
on (test
r early in
der test
General Approach to Test Generation

The approach to test generation used by VIVA conceptually enumerates all language productions consiste
a set of grammatical, semantic, sequential and concurrent assertions as tests of correct VHDL (“corre
cases”) and productions close to but incompatible with the assertions as tests of error handling (“err
cases”). Such generation of language productions is conceptually the inverse of compilation and exe
allowingadaptation of many existing compiler techniques.

Unfortunately, for VHDL and almost any other practically useful language, the set of all such language pr
tions is infinite. As one of many examples, VHDL allows an infinite number of signal declarations within a b
declaration. Thus the set of all language productions satisfying the specified assertionscannot be completely
generated, captured on storage media or applied to a tool under test within any finite verification time inte
using a finite pool of computers.

Thus our objective in language production based on constraints is to minimize the probability distribution
tion (PDF) area for first detection of an arbitrary percentage of all errors (validation confidence level) in th
under test. This objective is shown graphically in Figure 5 on page 13. VIVA test generators achieve this
tive via heuristic mechanisms guiding and pruning language productions. The rest of this section will ex
the design objectives which these heuristic mechanisms seek to optimize and some of the general he
employed by all of the generators. The following four sections will go into domain-specific constraint spec
tion approaches and heuristics in greater detail. Subsequent chapters will detail the techniques utilized b

FIGURE 5. Qualitative form of function production heuristics seek to minimize.

The cost of applying a language production to a tool under test has both a fixed cost component (tool st
and a variable cost component which increases with increasing length of production applied (although ge
not in any simple relation). Thus the cumulative volume of language productions (X Axis of Figure 5 on pag
must be weighted to account for tools start-up costs associated with each discrete language producti
case), resulting in a pressure to increase the length of each test case. Conversely, the presence of an erro
a production may mask detection of a subsequent error (for example the first error may cause the tool un
to terminate execution immediately, and thus the second error will never be reached).

P
ro

ba
bi

lit
y

of
 to

ol
er

ro
r

fir
st

 d
et

ec
te

d

Area to be
minimized

Weighted cumulative volume of language productions satisfying constraints

threshold for
undetected error

Acceptable
VIVA Final Report (Page 13)

afrl
9

Implementation Overview

nevita-

ws in
obability
ndent
entry

nstraint

s build.
le 1 on
e inten-
level of
raints).

not rely
rations
es and

thin the
ntactic
nt con-

signa-
From both inspection of Figure 5 on page 13, in which the curve asymptotically approaches 0%, and the i
ble flaws in human-generated language constraint specifications, the reader should conclude thatabsoluteconfi-
dence in the validation of a tool under test is not practically achievable. The number of undetected fla
human-generated language specifications may be reduced through terse specifications (assuming the pr
of error increases almost linearly with the number of lines of specification text) and completely indepe
development of specifications for the same VHDL language functionality (assuming errors in specification
are essentially uncorrelated). Both assumptions are believed sufficiently correct to warrant use of terse co
specifications and two, redundant, independently developed constraint specifications.

Lexical and syntactic grammars provide the structural framework onto which the subsequent specification
Constraint values are inherited up and down the grammar production trees (as summarized in Tab
page 14). At each production, constraints must be satisfied for production of a correct test case or may b
tionally violated to generate an error test case. Pre-execution semantic constraints are introduced at the
expressions (guided by inter-statement relationships, as in an assignment, and visibility ambiguity const
Sequential constraints are introduced at the level of sequential declarations and statements (such tests do
on inter-process communication). Concurrent constraints are introduced at the level of concurrent decla
and blocks (potentially inherited from one block down to the next through components, entities, architectur
configurations).

A class definition represents the state of an constraint value, methods used to derive other constraints wi
grammar and methods used to locally evaluate the constraint to determine locally allowable lexical and sy
productions. Following sections overview pre-execution semantics, sequential constraints and concurre
straints. Subsequent chapters will detail the information contained in each class and the class’s method
tures.

TABLE 1. Constraint values utilized at different levels in the lexical and syntactic production hierarchy.

Concurrent Statements Sequential Statements Expressions

Lexical, Syntactic and
Pre-execution
Semantic Test
Generation

VIVA_Kind
VIVA_Type,
VIVA_Ambiguity,
VIVA_Static

Sequential
Functionality
Test Generation

VIVA_ProcessState
VIVA_ControlFlow
VIVA_Value

VIVA_Kind
VIVA_Type,
VIVA_Ambiguity,
VIVA_Static

Concurrent Functionality
Test Generation

VIVA_Events VIVA_ProcessState
VIVA_ControlFlow
VIVA_Value

VIVA_Kind
VIVA_Type,
VIVA_Ambiguity,
VIVA_Static
VIVA Final Report (Page 14)

afrl
10

Test Generators for Lexical, Syntactic and Pre-Execution Semantics

nd test
assertion
ator has
allows

y trivial
dditional

g top-
ust be
oted by

ductions
ple the
ts (for

expres-

ype con-
time

ually
nguage
e type
ction.

set of
desired

on that
ompati-

er part.
njunc-
nerate

ntactic
lidation
and/or
Test Generators for Lexical, Syntactic and Pre-Execution Semantics

Test generators for lexical, syntactic and pre-execution semantics provide both the structural framework a
characterizations on which subsequent test generators are based. For example, the liveliness test of an
statement may assume that previous operation of a lexical/syntactic/pre-execution semantics test gener
explored the space of boolean expressions governing the activity/inactivity of the assert statement. This
the liveliness test generator to concentrate on I/O characteristics of the assert statement using relativel
boolean expressions. The sequential and concurrent test generators subsequently operate by inserting a
assertions into the syntactic grammar describing VHDL.

Lexical and syntactic tests are generated by choosing particular alternative productions (strategy) durin
down traversal of the grammar (from a start symbol). Different choices result in distinct tests. Choices m
made from character set classes (denoted by characters enclosed between ‘[‘ and ‘]’), alternatives (den
‘|’), and iterative operators (See “Test Generator Language Specifications” on page 35.)

Pre-execution semantic tests are specified by associating constraints with expressions and their child pro
(such as names). Constraints on expressions generally take the form of a kind constraints (for exam
expression is a signal), (sub)type constraints (for example the expression’s type is bit), ambiguity constrain
example the name may have multiple overloaded meanings) and a statisticity constraints (for example the
sion is locally static).

As constraints are passed up and down the tree, the constraints are generally transformed. For example, t
straints on an expression production called within a delay clause may initially constrain the delay to type
with a subtype ranging from 0 to time’high. Further generation of the expression production will event
encounter several optional dyadic operations. If the optional dyadic operation is selected by a particular la
production, there will be generally be different constraints on the left and right operands. Furthermore th
constraint returned from the left operand grammar will generally further constrain the right operand produ

In order to expedite test generation, all constraints are incrementally and recursively applied to control the
correct and incorrect language productions at each step in the production process in order to achieve the
test case objectives. For example, during lexical production of a locally correct VHDL test case, an asserti
a based literal lexeme has a subtype between 0 and 15 will permit generation of any character sequence c
ble with the base subtype assertion; then return the chosen value for use during production of the integ
When the production generation arrives at the integer part, production will be constrained locally by the co
tion of the previously chosen base and the resulting subtype domain. It would be much less efficient to ge
complete based literals (in this example), then test the literal for compatibility with an assertions.

As noted earlier, a validation system should ideally have more than one implementation of the lexical, sy
and pre-execution semantics test generator installed (to reduce the number of undetected flaws in the va
process). In order to find errors earlier, it is desirable that such test generators apply different heuristics
utilize functionally distinct language specifications (perhaps inverting the order of productions in one).
VIVA Final Report (Page 15)

afrl
11

Implementation Overview

rating
tion
eration
able to
res are
subse-

L frag-
frag-

ers on

pared
or allo-

to use

ckage,
lloca-
e test
cify the

es both
results
leading
rrect.

put

t-site.
ystem
he suc-
n with
ed for
Test Generators for Liveliness

Liveliness test generators explore the ability of a tool under test to interact with the test wrapper and ope
system environment via textio (VHDL “read” and “write” functionality), assertions, reports, storage alloca
and storage deallocation. Results from applying liveliness generators to a tool under tests help to prune op
of subsequent test generators. In the most extreme case, few tests can be effectively run on a tool un
respond to the wrapper via proper execution of textio, assertion statements or report statements. If failu
limited to formatting, writing, reading or scanning specific data types or execution of specific statements,
quent tests can rely on I/O mechanisms demonstrated to work during the liveliness phase.

FTL Systems’ liveliness test generators use a Perl script to customize and arrange parameterized VHD
ments related to textio or dynamic-memory allocation into a stream of correct or error test cases. VHDL
ments may either be embodied directly in the Perl script, read from a file or supplied via optional paramet
the command line (as motivated by the following paragraph).

Many alternative implementations of liveliness tests are possible, including reference to a manually pre
archive of test cases (precludes several test forms described below) or automated generation from a textio
cation-related specification grammar. There is nothing in the VIVA architecture requiring or predisposed
of Perl for liveliness tests.

Subsequent test generators which validate the sequential or concurrent functionality of a VHDL-related pa
such as a multi-valued logic package, with internally defined textio subprograms and implicit allocator/dea
tor functionality for newly defined types, may recursively utilize liveliness test generators. Such a recursiv
generation process may effectively utilize optional parameters on the test generator command line to spe
new types and test sequence numbers to be utilized by the child test generation process.

Liveliness tests are also the first of the four test generators described here in which the test case includ
VHDL code intended directly for the tool under test and an expected results specification. The expected
specification appears at the beginning of the annotated test file (set off as comments preceded with three
‘-’ symbols) in the form of assertions which must evaluate to true in order for the test result to be judged co
The expected test results are generallynot a text string which must be matched with the tool under test’s out
(“Interfaces Between Test Administrator and Test Site Wrapper” on page 77).

Liveliness validation tests are particularly sensitive to details of the computer configuration running the tes
Parameters such as physical memory, virtual memory, availability of a writable file system, the operating s
version, the processor architecture version and even other applications running concurrently may impact t
cess of a liveliness validation test. Thus strong consideration should be given to running liveliness validatio
a wider range of computer configuration groups (via the test administrator) than would be recommend
other validation test generators.
VIVA Final Report (Page 16)

afrl
12

Test Generators for Sequential Functionality

uential
. Such
re than

imple-
stan-

tectures
as

simple
tements

e added
e data
xpected

ation
func-
type
stants
e pair).

d in
See
nd bot-
quen-
nted for

ich
itting
Test Generators for Sequential Functionality

Test generators for sequential functionality implement testing of sequential-statement control flow, seq
statement operation and evaluation of expression values during tool execution (for example, simulation)
tests do not involve any form of communication between VHDL processes. Test cases may contain mo
one VHDL process if possible error masking is taken into account by the overall test strategy.

There are fundamentally two kinds of sequential functionality test generators; those relating to the correct
mentation of intrinsic VHDL language constructs (such as the addition of two integers defined in package
dard) and those relating to the correct implementation of packages, package bodies, entities and archi
which are specified using VHDL (such as the VITAL timing library). The first kind of tests will be referred to
intrinsic tests, the secondextrinsic.

For intrinsic testing, validation begins with assignment expressions testing the numerical correctness of
expressions (using the results of previous liveliness testing to guide use of assert statements, report sta
and/or textio). Sequences of more complex sequential statements, control flow and subprogram calls ar
(in order). Expression formation uses symbolic evaluation, knowledge of common computer architectur
types and an infinite precision mathematical package in order to select useful test cases and define e
results.

For extrinsic testing, the functionality to be tested must be fully specified within a prototype implement
(generally derived directly or manually from the desired VHDL-related standard). VIVA then compares the
tionality of the tool under test to the functionality which would have been predicted by use of the proto
implementation. Obviously the prototype implementation must be completely defined (all deferred con
defined, all subprogram bodies defined, and all components bound to a defined entity and architectur
Extrinsic tests also presume prior validation of sequential and concurrent intrinsic VHDL functionality.

Knowledge of VHDL control flow operators, process state and expression value is embodie
VIVA_ControlFlow, VIVA_ProcessStateand VIVA_Value classes and assertion values of these classes (
“Sequential Intrinsic Function Test Generation” on page 57.). These assertions are propagated top-down a
tom-up through productions of the lexical and syntactic grammar in order to control choice of alternative se
tial statement and (generalized) expression productions, augmenting assertion values already impleme
test generators described previously.

Verification of intrinsic, sequential functionality within VHDL processes in turn provides a foundation on wh
we may build validation of concurrent intrinsic and concurrent extrinsic functionality. Test generators em
such tests are described in the next section.
VIVA Final Report (Page 17)

afrl
13

Implementation Overview

ith lan-
s inter-

ic and
by the
which
ch as

verifi-
er pro-

in signal
f a new
g exe-
or sus-

re-exe-
r
nts and
ts in the

nality
t cases
d to be
ntactic
wnward
ordering

ism as is

ro-
eform
y side-
Test Generators for Concurrent Functionality

Concurrent test generators produce test cases verifying that VHDL processes inter-act in accordance w
guage-architected communication mechanisms. VHDL provides for both signals and shared variables a
process communication mechanisms.

Just as with sequential functionality test generators, concurrent test generators are divided into intrins
extrinsic versions. Intrinsic versions explore a tool’s ability to implement language mechanisms defined
base VHDL language whereas extrinsic versions explore implementation of communication mechanisms
may be embodied in a proprietary (perhaps optimized) implementation of a VHDL-related standard (su
Vital).

Top-down and bottom-up assertion propagation also provides the mechanism for concurrent functionality
cation. Assertions are made concerning side-effects initiated by one or more processes and visible to oth
cesses. The side effects may be assignments of the same value to a signal (‘active side-effect), change
value, resolution of signal value, assignments of the same value to a shared variable or assignments o
value to a shared variable. The side-effect event(s) may be visible to another process by virtue of triggerin
cution (process sensitivity list), reference to a value (conceptually on the right hand side of an expression)
pension (with some monitor approaches).

Just as kind, type, ambiguity and statisticity are propagated up and down expression production trees for p
cution semantic verification, assertion values of typeVIVA_Events propagate up and down VHDL gramma
rules to implement concurrent functionality. These values represent a partial ordering of (generalized) eve
value relationships visible across process boundaries. They are generalized in that they represent even
history of signals as well as shared variables (and eventually quantities if extended to VHDL-AMS).

Generation of concurrent functionality tests begins at a concurrent block level, where assertion functio
annotating the language grammar expresses the event interactions permitted for correct VHDL, VHDL tes
with errors that must be detected and VHDL test cases with errors that should never be written but nee
detected by a tool implementation. Analogous to the choice of alternative grammar productions at the sy
level, concurrent interaction strategies may be chosen at the concurrent block level and propagated do
into concurrent statements, sequentially statements and expressions as derived assertions. Event partial
assertions are passed by value into and out of grammatical productions using exactly the same mechan
used for kinds, types and other assertions.

The internal representation ofVIVA_Events, embodied as a class, resembles a generalization of VHDL’s p
jected waveforms (See “Sequential Intrinsic Function Test Generation” on page 57.). The number of wav
elements, their temporal relationship (ordering and time from one element to the next) and the objects the
effect (such as shared variables) are more general than those permitted for a VHDL projected waveform.
VIVA Final Report (Page 18)

afrl
14

General Approach to Test Administration

data-
n sys-
n as a

figura-
ble as a
oint of
st case

t

tentially
success-
and or
al user

test-site
tool ver-
tions,
sts indi-
or).

logi-
e wrap-

or a

of pend-
ons, the
the lat-

ter group
some-

xternal
General Approach to Test Administration

Test administration provides an organization for coupling multiple test generators, multiple test sites, the
base of test results and the (graphical) user interface so as to realize a fault-tolerant VHDL tool verificatio
tem. For configurations of approximately ten or fewer computers, the test administrator is designed to ru
single operating system process, potentially time-sharing a computer with test generation or test-sites.

A (graphical) user interface needs to beable to alter or define the configuration of the test generators, con
tion test-site computer groups, and report of current test status. Each test failure is graphically representa
stack of hypertext links into the appropriate language reference manual, beginning with the immediate p
failure. At each point in the stack there may be one or more relevant references explaining where the te

was formed from in terms of standardization text.1 A suitable2 HTML browser is required for such display, bu
not included in VIVA distributions.

The test administrator is responsible for keeping track of on-line test generators (those test generators po
capable of producing test files in response to a command), test cases which have been generated but not
fully completed on all computer groups, on-line test sites (those test sites potentially capable of accepting
responding to a test file), subsystem failure detection/recovery, summary report generation and graphic
interface activity (keeping the user updated on validation progress).

In order to track and report tests which have been generated and yet not completed successfully by a
from all computer groups, the test administrator requires a persistent database associated with a specific
ification process. In order to provide for portability among various computers and reduce licensing restric
the test administrator uses a simplified persistent database specifically designed to retain the status of te
cating a flaw in the tool under test (VHDL with an undetected error and correct VHDL triggering a tool err

Since test administration is potentially a single point of failure, it is essential that the test administrator be
cally as simple as possible by localizing special-case program logic within the test generators and test sit
pers whenever possible. Nothing internal to the test administrator should be hard-wired for either VHDL
specific tool under test.

The test administrator database periodically forces a consistent update of test status and the latest level
ing test_recovery files for each test generator to one or more operating system files. For performance reas
test administrator retains a cached copy (in memory) of test status, computer resource configurations and
est test_recovery files for each test generator. A pair of sequential-access database files for each compu
configuration running tool verification are alternatively updated so that one complete database (perhaps

1. Licensing restrictions imposed by IEEE limit redistribution of on-line VHDL Language Reference Manuals.

2. Initially versions assume a Netscape Version 3.0 HTML browser. Unfortunately no standard yet governs portable, e
positioning of the reference point within a displayed HTML document, hence please use Netscape for now.
VIVA Final Report (Page 19)

afrl
15

Implementation Overview

prob-
es.
what dated) will always be closed and complete on rotating media (swing-buffer approach), increasing the
ability of rapid (perhaps 1 to 10 minute) recovery even from catastrophic and unpredicted computer failur
VIVA Final Report (Page 20)

afrl
16

Organization of Subsequent Chapters

details

ter 4),

94
e of an

tview.

rms spec-
ution
Organization of Subsequent Chapters

This chapter provided a summary of the VIVA architecture, algorithmic approaches and interfaces. For
required for integration, please refer to one of the following chapters providing much greater detail:

• Interfaces common to all test generators (Chapter 2),

• Test generators language definition for lexical, syntactic and pre-execution semantics (Chapter 3),

• Test generator’s usage of language definition for lexical, syntactic and pre-execution semantics (Chap

• VIVA installation (Chapter 5),

• annotated bibliography describing related work (Chapter 6).

This document is distributed in both Postscript1 and PDF2 formats. Postscript copies of the document print as
pages. PDF versions of the document provide extensive hypertext links (denoted by highlighted text). Us
on-line PDF version of the documentation is therefore encouraged.

1. Unfortunately, a flaw in development tooling currently precludes display of the Postscript version using GNU Ghos
A fix is expected before production release which enables use of Ghostview.

2. Note that a PDF reader is not developed or deliverable as part of this project and thus is subject to any license te
ified by the PDF reader provider. A PDF reader is generally available without cost and is aggregated on the distrib
media solely as a convenience to those receiving the distribution.
VIVA Final Report (Page 21)

afrl
17

Implementation Overview
VIVA Final Report (Page 22)

afrl
18

afrl
THIS PAGE WAS INTENTIONALLY LEFT BLANK

CHAPTER 2 Interface Common to
All Test Generators
r-oper-
enerator
the test

and a
ped

se test
tool’s

VHDL

ic and
r the test
ll as an

), which
riting a

readily
VIVA
This chapter defines the interface requirements which any test generator must comply with in order to inte
ate with the test administrator. Sections of the chapter describe the interface architecture, common test g
command line options, interactive control commands, file output requirements, status responses from
generator, fault tolerance requirements and software engineering requirements.

Test generators may take many forms including both the four versions explicitly specified in this document
wide variety of others not explicitly provided with VIVA. For example, a test generator could be develo
which supplied its test sequence from a pre-stored archive (for compatibility with legacy or special-purpo
cases). Test generators could readily be developed or adapted from prior work in order to measure a
response to capacity stress, its performance, a tool’s ability to gracefully handle random permutations of
or other text or even exercise seldom-used pathways within the tool.

Test generators may be written in a wide variety of languages, including C, C++, Perl, Python, Java, Bas
even database languages such as SQL with appropriate encapsulation. Generally, the language chosen fo
generator need only be capable of yielding an executable which can be exec’d via an operating system ca
independent operating system process (perhaps in conjunction with an interpreter as in the case with Perl
is capable of reading interactively from a standard output stream, and which is capable of reading and w
sequence of files to the host operating system.

The interface between the test generator and its environment was specifically designed to be simple, to be
adaptable to existing validation techniques, and to be readily exercised independently from the rest of the
tool environment. This simplicity, adaptability and portability does come at modest performance cost.
VIVA Final Report (Page 23)

afrl
19

Interface Common to All Test Generators

egrated
tirely
rmation

or (See
using
specific

r using
Stream
results
enerator

ure” on

ed. The
racter.
distrib-

st has
on (and

ils on
ts” on

ported
Interface Architecture

Interfaces to and from the test generator are shown in Figure 6 on page 24. A functional test generator int
into VIVA must map into this interface architecture. Implementation within the test generator process is en
governed by the requirements for a stand-alone executable process on a given computer. For further info
on such processes, please refer to system-level programming documents for the computer in question.

FIGURE 6. Interfaces to and from test generator process

A set of command line arguments provide initial, mandatory configuration parameters for the test generat
“Command Line Control Flags” on page 26.). Additional configuration parameters may be supplied
optional, test-generator specific command line arguments, environment variables, and test-generator
start-up files.

The test generator process corresponds directly and interactively with the distributed test administrato
standard input (See “Command Stream Control Flags” on page 28.) and standard output (See “Status
Control Flags” on page 30.). The command stream regulates the production of test (flow control) and test
so that the test generator can dynamically prune the test generation tree. The status stream from the test g
supplies test statistics for the test administrator’s database (See “Test Administrator Database Struct
page 75.), which in turn supplies a report to VIVA’s graphical user interface.

The test generator emits three different, test-site related files in the local file system for each test generat
three files are contained in different directories and related by a common file name to the left of the ‘.’ cha
The ‘Annotated Test File’ must be emitted before the status stream’s test_done command is issued to the

uted test administrator1. When a test is successful, the files are deleted by the test administrator. When a te
a fault, the test administrator saves the annotated version of the test and the restart context file. Distributi

redistribution2) of test files to test-sites is the responsibility of the distributed test administrator. Further deta
the files emitted by the test generator may be found later in this section (See “File Output Requiremen
page 32.).

1. The annotated file may not be emitted at the same time as the test file, so that it may add the results of the run re
back to the test generator from the tool under test.

2. Redistribution is required to handle test-site and network failures.

Test Generator
Process

Test Files
Annotated Test Files
Restart Contexts

(Test Administrator Related) (Test-site Related)
<Command Line>

Command Stream (Via StdIn)

Status Stream (Via StdOut)
VIVA Final Report (Page 24)

afrl
20

Interface Architecture

indicate
cess was
ror val-
When a test generator completes, a return value 0 (zero) indicates that all was successful. This does not
that there was no faulted test, just that the test generator performed as expected. If the test generation pro
not fully successful, the test generator should return a non-zero error code corresponding to one of the er
ues specified in the computer’s <errno.h> header supplied with the computer’s operating system.
VIVA Final Report (Page 25)

afrl
21

Interface Common to All Test Generators

erators
within

hell or
es will
ncate-

a ‘-’.
he white

ent. An
Command Line Control Flags

This section specifies both mandatory and optional user command line interface flags which all test gen
must implement. Test generator specific command line arguments may be supported and can be initiated
VIVA from either the graphical user interface or test generator specific start-up file.

Command line flags resemble the following example:
-test_directory ‘/usr/viva/test/’ -testa_directory ‘/usr/viva/testa/’
or
-test_directory ‘d:\viva\test\’ -testa_directory ‘d:\viva\testa\’

where any file names provided as arguments will be quoted in order to avoid possible expansion by a s
other command interpreter (addresses test generators implemented using a shell script). Directory nam
contain the trailing ‘/’ or ‘\’ (depending on the operating system) so that generated test names can be co
nated to the directory argument with out knowledge of operating system the generator is running on.

In general, a command is preceded by a single ‘-’ and followed by an argument which does not begin with
The argument and the subsequent command are delimited by one or more white-space character(s). T
space characters are a blank or tab. White-space characters are not permitted within a command or argum
embedded semicolon should not appear within a single command line for shell compatibility.

The required user commands are:

-test_directory <directory_specifier>
denotes the directory into which test files should be placed.

-testa_directory <directory_specifier>
denotes the directory into which annotated test files should be placed.

-restart_directory <directory_specifier>
denotes the directory into which restart contexts should be placed.

The optional user commands are:

-language <label_of_predefined_language_option>

denotes the language which should be generated if multiple languages are available. Current options
include VHDL93, VHDLAMS, STDLOGIC and VITAL. If not specified, a default language will
be selected by the test generator.

-generate <integer_literal> <“bad” or “good”>

denotes how many and what kind of test files should be generated on start-up. This option is used
 for a batch run, once the number of test are created the test generator exits. If there is no ‘-generate’
 command specified in the ‘Command Line’, then after the test generator process is started that
 process will stall until a generate command is received on the ‘Command Stream’. A bad test will be
generated with a known error to assure an analyzer under test is checking thoroughly.
VIVA Final Report (Page 26)

afrl
22

Command Line Control Flags

t

t.

r should
t writ-
uests to
n-integer
ich are
to an
sing the
low the

essage
-conformance

 this command changes the waypruning is done. If this flag is set,the test will be generated as if no
 faults have occurred. If the fault threshold for a production is reached, then the test which includes tha
 production is discarded and not registered with the test administrator.This will allow for the predictable
recreation of tests, independent of a tool under test failure. If this flag is not set, reaching the fault
threshold for a production can alter the direction the test generator goes in generating a test.

-restart_checkpoint_interval <integer_literal>

denotes interval of restart context generated by the test generator. If not specified ‘1’ should be defaul
Warning: This flag should be used sparingly,because it limits the ability to restart test generation at
 a particular test

-restart_from <file_name_in_restart_directory>
denotes the file name within the restart directory at which test generation should resume.
The test generator should verify that the restart file was one it had initially created or is upward
compatible with the current version of the test generator
(See “Software Engineering Requirements” on page 38.).

If more than one instance of a particular command flag appears on the command line, the test generato
ignore all but the last such instance of the command. If a specified directory or file does not exist or is no
able for a non-ignored command, the test generator should terminate with a suitable error number. Req
generate less than zero test files should be interpreted as a request to generate 0 test files. Use of a no
argument should cause termination with a suitable error number. Optional command line arguments wh
not recognized by the test generator should be ignored (for upward compatibility). A termination due
invalid command line should be explained by a message on the status stream to the test administrator u
‘-ui_message’ command prior to the test generator’s termination. The message should be sufficient to al
user to isolate and repair the failure. For FTL-developed test generators, please use internationalized m
format.
VIVA Final Report (Page 27)

afrl
23

Interface Common to All Test Generators

r using
t genera-

‘-’ and
uments.
d by the
errupt
Command Stream Control Flags

The control stream interactively communicates from the distributed test administrator to the test generato
the test generator’s standard input stream. Some messages in the control stream are common to all tes
tors, however nothing precludes a test generator from implementing domain-specific commands.

The format of control messages closely resembles that of the command line. Each command begins with a
may be followed by zero or more arguments. The blank and/or tab characters separate commands and arg
The command stream is terminated with a ‘;’ character. The command stream should be read and execute
test generator when a ‘;’ is seen on the command stream if the generator is idle. SIGINT will be used to int
the test generator if a command has been sent and the generator is in the process of generating a test.

The following control flags (commands and arguments) will be implemented by all test generators:

-restart_from <file_name_in_restart_directory>
denotes the file name within the restart directory at which test generation should resume.
The test generator should verify that the restart file was one it had initially created or is upward
compatible with the current version of the test generator. This will interrupt the generation of
test if the test generator is currently generating test.
(See “Software Engineering Requirements” on page 38.).

-generate <integer_literal><“bad” / “good”>

denotes how many and what kind of test files were generated. If currently generating tests and a
second generate command is received, standard error will be consulted by the test generator at
 the conclusion of current generate command before starting the newly issued generate command
 to assure that there is no problems. The number of test from the newly issued generate command
will be added to the current number of test to be generated. If the type of tests are different for the
 current tests being generate, the test generator must keep track of this. Bad tests will be generated
 with a known error to assure an analyzer under test is checking thoroughly.

-test_results <test name> <string>

denotes the results of the test stated in the test name field from the tool under test. These results.
will be returned as a string. The string is made up of messages separated by a ‘\n’ (newline)
 character. A message will be in the format as follows:

 <error serverity> :: <line number> :: <character offset> :: <string of key words>

The error serverity will be listed as one of the following words:

 (FAILURE, ERROR, WARNING, NOTE)

If the tool under test does not supply character offset a ‘-1’ will be indicated in this field. The first
 message in the string will be the number of messages in the string excluding the first.

-succeeded <quoted expression or subprogram signature> <test_name>

this command comes in response to an earlier query command on the status stream and denotes
a liveliness capability which tested successfully.
VIVA Final Report (Page 28)

afrl
24

Command Stream Control Flags
-failed <quoted expression or subprogram signature> <test_name>

this command comes in response to an earlier query, denotes a liveliness capability which tested
unsuccessfully.

-statistics

denotes that the running status of the test generator to be returned to the test administrator.
(See “Test Administrator Database Structure” on page 75.).

-exit

directs the test generator to terminate testing and exits at once.The same error handling criteria noted for the
command line apply to command stream (See “Command Line Control Flags” on page 26.).
VIVA Final Report (Page 29)

afrl
25

Interface Common to All Test Generators

sing the
s (com-

h status
rs sepa-
ter in the
nerators

strator:

r

re,
Status Stream Control Flags

The status stream interactively communicates from a test generator to the distributed test administrator u
test generator’s standard output stream. The distributed test administrator must handle the status flag
mands and arguments) noted below. All other commands are ignored (for upward compatibility).

The format of status flags closely resembles that of command line flags and command stream flags. Eac
message begins with a ‘-’ and may be followed by one or more arguments. The blank and/or tab characte
rate commands and arguments. Since the status stream is read interactively, the presence of a ‘;’ charac
status stream directs the test administrator to handle any prior flags. Since the status stream is the test ge
standard output, the test generatorMUST flush STDOUT buffer after a command is sent.

The following status flags (commands and arguments) will be implemented by the distributed test admini

-ui_message <quoted string>

denotes a message to be sent to the test administrator’s graphical user interface and
summary log.

-ui_statistics <quoted string>

denotes statistical data to be sent to the core test administrator’s graphical user interface, if
queried for, and test administrator’s database.
(See “Test Administrator Database Structure” on page 75.)

-register <quoted expression or subprogram signature> <test name> <group>

this command is used to register a generated test with the distributed test administrator. If the
test is a liveliness test it denotes the expression and test name associated with a particular
liveliness functionality (for tracking success or failure when this function is queried at a later time.)
When the test is not a liveliness test, the expression will be a NULL string. The test name and
group will be specified. The group if NULL indicates a single generated test file in to this test. If there
are more than one generated test files to this test, then there will be a identical group number for all
files associated to the test. These tests will sent to the same test site and will be run in the same orde
that the test generator gives them to the distributed test generator.

test_done <test name> <“fault” /”no_fault”>

this command is sent to the distributed test generator at the end of a test loop. The parameter ‘fault’,
 is sent when agood test is generated and had a failure, a bad test is generated and did not have failu
or a bad test is generated and the failure is not what was expected. The parameter ‘no_fault’ is sent
when the results are as expected.

 -query <quoted expression or subprogram signature>

inquires concerning the success or failure of the particular quoted expression or subprogram
which denotes a liveliness capability. Test administrator responds with a succeeded or failed
command stream.
VIVA Final Report (Page 30)

afrl
26

Status Stream Control Flags

lags”
-returning <integer error number>

denotes a programmed return of the test generator and an error number from errno.h denoting the
reason for the abort. A zero return code denotes successful completion of all programmed tests.This
 does not indicate that there was no faulted test, just that the test generator performed as expected.

Handling criteria noted for the command line applies to status streams (See “Command Line Control F
on page 26.).
VIVA Final Report (Page 31)

afrl
27

Interface Common to All Test Generators

itted into
e direc-
e the

roup. In
or with
rticular
com-

e test is
ener-

starting

leading

hen it
state.
ering

egistra-
Stream
es in

test and
ndards.
ation
.ats”.

associ-
uld rec-
te are
amed
File Output Requirements

Test generators emit a sequentially numbered sequence of tests. For each test there are three files, em
three distinct directories denoted on the test generator command line. Each test generator is given a uniqu
tory for each of the three kinds of test files. The exceptions to this are if the user chooses to us
restart_checkpoint commands upon calling the test generator or if the test being generated is part of a g
the case of the ‘-restart_checkpoint_interval’ the restart context will only be generated by the test generat
a test generated at the stated interval. This flag must be used with caution since the ability to restart at a pa
test is forfeited. In the case of the ‘restart_from’ the directories that will be used for test and testa must be
patible with the test generator. See “Software Engineering Requirements” on page 38. In the case when th
part of a group, only one restart file will be generated for the group of tests. This restart file will restart the g
ation of tests with the first of the group, since tests within a group are dependent upon one another, re
elsewhere in the group should cause a failure.

Each file name is constructed from a leading lower case ‘t’ followed by the hexadecimal number of the test1, a ‘.’
and a three-character file extension differentiating test files, annotated test files and test recovery files. No
zeros are permitted within the hexadecimal test number.

The test file is the VHDL source intended for the tool under test. If the file generated is not part of a group t
should be self-contained by working with the assumption that the tool under test is starting from its initial
If the file generated is part of a group then it must be noted so in its restart file, (See “Software Engine
Requirements” on page 38.) It must also be registered with the test administrator as one test of a group. R
tion of the tests will be in the same order the tests need to be analyzed for proper results.(See “Command
Control Flags” on page 28.) A test’s result will remain until the last test of the group is analyzed. Test fil
general, will have the extension “.tst”. For example, a test file might be named “t1234AC.tst”.

The annotated test file augments the test file with assertions concerning the expected response to the
incremental language specification items used to create a derivation path back to the reference VHDL sta
Test assertions are prefaced on a lines beginning with “---” followed by a character other than ‘-’. Deriv
lines are prefaced with “----” followed by a character other than ‘-’. Annotated test files have the extension “
For example, an annotated test file might be named “t1234AC.ats”.

The test recovery file provides enough context that the test generator can restart test generation with the
ated test. Test recovery files are completely defined by the test generator, however the test generator sho
ognize test recovery files it generated. Test recovery files are handled as binary (all eight bits per by
significant). Test recovery files have the extension “.rec”. For example, a test recovery file might be n
“t1234AC.rec”.

1. Hexadecimal digits ‘a’ through ‘f’ in the file name are to be lower-case.
VIVA Final Report (Page 32)

afrl

afrl
28

File Output Requirements

ich have
dminis-

rator.
A test generator must be prepared to have up to 1024 outstanding tests. Outstanding tests are those wh
been generated yet whose test result are unknown. Tests which have no faults will be deleted by the test a
trator from all three directories. Tests which have a fault will be managed and stored by the test administ
VIVA Final Report (Page 33)

afrl
29

Interface Common to All Test Generators

admin-
is fault

erator is
file is
rmine

nts” on
orting
g com-

he last
dminis-
o the user
context
egin-

ted test

d, the
istrator

test
eturn

y be
as with
lly the
ral thou-

operat-
tes).

ration
Fault Tolerance Requirements

System architecture fault tolerance requirements dictate that a test generator may fail at any time. The test
istrator is responsible for detecting and transparently recovering from such failure whenever possible. Th
tolerance capability requires that the test generator meet several requirements.

The test generator must be re-startable when supplied with a compatible restart context file. The test gen
solely responsible for insuring that it is compatible with the restart context file and that the restart context
complete with no detectable corruption. The restart context file will have a unique header that can dete
compatibility between the restart context file and test generator. (See “Software Engineering Requireme
page 38.) If the test generator detects a non-compatible or corrupted restart context file it should fail, rep
the error to the user interface by way of the -ui_message and to the test generator by way of the -returnin
mands on the status stream.

When a test generator initially fails, the test administrator attempts a restart of the test generator from t
known restart context file. If the test generator fails again on what appears to be the test number, the test a
trator assumes a failure in the test generator, marks the test generator as off-line, and sends a message t
interface. If the test generator rejects a restart_context file, the test administrator reverts to a prior restart_
file if available. If this second file fails, the administrator attempts a restart of the test generator from the b
ning of its sequence (clean start). On restart, only the restart context is supplied; any test files or annota
files associated with the restart have been deleted.

If the test generator exits (for whatever reason) without allowing for the completion of the test being checke
test generator will be restarted with the restart context file whose test was last checked. The test admin
will clean up the directories prior to restart. If this happens again a message is sent to the user interface.

If a test site fails while running a test, the test will be retried by the test administrator. If it fails again the
administrator will send a ‘failure’ severity level to the test generator for this test. The test generator will r
the on the ‘-test_done’ command <fault> so that the file will be stored as a faulted test.

For performance reasons,pleasekeep the size of restart files small whenever possible. While a restart file ma
somewhat trivially constructed by dumping and then undumping the test generator’s address space (
Emacs and TeX), this approach generally results in a prohibitively high performance penalty. Genera
restart context should capture near-minimum information needed to restart test generation, perhaps seve
sand bytes of information at most.

The test generator is responsible for any child processes it initiates. The test generator will assure that the
ing system terminates these processes along with the test generator (any time the test generator termina

Any test generator found in non-compliance with the preceding fault tolerance requirements during integ
quality assurance must be clearly denoted at the user interface asExperimental, use at your own risk. Formal
VIVA Final Report (Page 34)

afrl
30

Fault Tolerance Requirements

to be
distribution of such test generators with VIVA should be isolated in a contributed subdirectory so as not
confused with test generators which have passed system test.
VIVA Final Report (Page 35)

afrl

afrl
31

Interface Common to All Test Generators

. Other

to an
that can
Not all

uage of
Test Generator Message Format

For FTL Systems developers, the internationalized message format will be used by the test generators
developers are encouraged to use this format as well.

This format is simple. When a faulted test is discovered, the Key words, Characters or Phrases (i.e. PACKAGE,
ENTITY, ‘;’) which are involved in the fault and are part of the language standard under test, will be passed
error method with the message index selection. The error method contains an array of all error messages
be detected by the test generator. The message’s format allows for a Key word, Character, etc. insertion.
messages require insertions. This will allow for the messages to be translated appropriately to the lang
choice without altering the generator.
VIVA Final Report (Page 36)

afrl
32

CHAPTER 3 TestGeneratorLanguage
Specifications
ors for a
y differ-

eted or
terface

delity

racter-
JAVA)

stics of

order
ference
values,
e of the
, such
Introduction to Lexical and Syntactic Specifications

This chapter specifies the format used to configure lexical, syntactic and executable semantic test generat
specific language under test. The resulting set of test generators may be customized and grouped in man
ent ways to implement specific kinds of lexical, syntactic, functional or liveliness tests.

Test generators may be created from the specifications outlined in this chapter using compiled, interpr
other techniques as long as the result is a test generator capable of complying with the test administrator in
(See “Interface Common to All Test Generators” on page 23.). This portability is intended to increasing fi
of the resulting validation by providing permutations of the front-end specifications and generators.

The chapter begins by describing FTL Systems’ integrated lexical and syntactic grammar specification cha
izing the language implemented by a tool under test. Program fragments (in languages such as C++ or
may be inserted into the lexical and syntactic grammar specification both to embody semantic characteri
the language under test (constraints) and to implement particular test generation objectives (strategies).

Program fragments are inserted into the lexical and syntactic specification text indirectly (by reference) in
to facilitate generation of variant strategies by an external agent. Each program fragment inserted by re
generally implements a particular semantic constraint or test generation strategy, modifying parameter
local state and global state accordingly. Incorporation of program fragments by reference also enables us
same lexical and syntactic grammar specification with program fragments written in a variety of languages
as C, C++ and Java.
VIVA Final Report (Page 37)

afrl
33

Test Generator Language Specifications

include
d other

ing lan-
t make
hoice,

ce. If no
g of the

. Input
r non-
eters

nature
types

apter in
e frag-
st cases
Globally-scope, persistent state may be declared and referenced by program fragments. This state may
information such as the set of accessible symbols and their meaning, global test generation objectives an
information shared among all language productions.

The lexical and syntactic grammar format specified in this chapter includes several mechanisms describ
guage production control flow; alternatives and iterators. In order to emit a test case, the generator mus
specific choices for potentially recursive instances of each alternative or iterative production. For each c
zero or more program fragments, encapsulated as a function, may be inserted to make the desired choi
such fragments are given, a suitable random choice generator is inserted automatically during processin
specification into a test generator.

Each production rule in the lexical and syntactic specification includes both input and output parameters
parameters communicate contextual information into a specific instance of the production rule (terminal o
terminal) directly from the call site within the grammar at which the production was called. Output param
return information to the call site (terminal or non-terminal).

For simplicity, FTL System’s use of the lexical and syntactic grammar associates a common parameter sig
with all language productions (terminals and non-terminal). The later sections of this chapter describe the
and common parameter declarations use for all such interfaces using C++.

Subsequent chapters build on the lexical, syntactic and parameter passing foundation provided by this ch
order to generate functional and liveliness tests using insertion of specific strategy programming languag
ments. The mechanisms defined in this chapter translate subsequent strategies into specific, textual te
which can be applied to the tool under test.
VIVA Final Report (Page 38)

afrl
34

Lexical and Syntactic Specification Grammar

n file.

t uni-
special
arks (“),

s (+),
ns (>),
racters
m feeds.
signs

either
may

and ter-
icted to

ever in
Lexical and Syntactic Specification Grammar

Lexemes

This subsection describes the set of lexemes which may appear in a VIVA front-end grammar specificatio
Any illegal lexemes must be reported to the user at the earliest point feasible.

VIVA specification files consist of a sequence of graphical characters compliant with ISO _____ (16-bi
code). Such graphical characters include upper case letters (A-), lower case letters (a-ÿ), digits (0-9),
characters, space characters and other special characters. Such special characters include quotation m
number signs (#), ampersand (&), tick (‘), left parenthesis ((), right parenthesis ()), asterisk (*), plus sign
minus signs (-), periods (.), slashes (/), colons (:), semicolons (;), less thans (<), equalities (=), greater tha
left square brackets ([), right square brackets (]), underlines (_) and vertical lines (|). The space cha
include spaces, non-breaking spaces, horizontal tabs, vertical tabs, carriage returns, line feeds, and for
Other special characters include exclamation marks (!), left curly braces ({), right curly braces (}), division
() and other less frequently used characters.

3.0.0.1 Comments

Comments may be inserted between any two distinct, non-comment lexemes in the specification file using
C or C++ comment style. C comments begin with a “/*” and end with a “*/” sequence; such comments
include one or more embedded newline characters. C++ comments begin with a “//” character sequence
minate at the first subsequent newline character. Comments may begin in any column (they are not restr
begin in some specified initial column).

3.0.0.2 Keywords

Several different identifiers, listed below, are reserved as keywords. The keywords are case-sensitive, how
order to facilitate readability, use of a case-folded keyword, such as #START, is discouraged:

#include
#program
#start
#separator
#function
#language
#terminal
#enumeration
#nonterminal

3.0.0.3 Delimiters
VIVA Final Report (Page 39)

afrl
35

Test Generator Language Specifications

rs. Any
racter.

en during
ifies all

phic or

”. Any

se 10.

neither
Special characters include:
‘[‘ and ‘]’ generally denoting character sets,
‘{‘ and ‘}’ delineate program implementation source,
‘(‘ and ‘)’ delineate parameter lists and association lists,
‘\’ denotes a quoted character,
‘@’ is used at control flow function call sites,
‘;’ is used to terminate elements,
‘:’ is used to separate control flow function signatures and bodies,
‘|’ is used to separate generally equivalent alternatives,
single quotes ‘ delineate each character literal.

3.0.0.4 Character_Literal

Single characters enclosed within single quotes, such as ‘a’ are scanned as literally as single characte
character preceded by a ‘\’ acquires its literal meaning, as in \”, which is interpreted as the quote cha
<<Change references to Unicode>>

3.0.0.5 Character Classes

Character classes denote zero or more character classes, from which exactly one character must be chos
language production. If the leading character of a character set is a circumflex (^), the character set spec
characters NOT explicitly denoted in the character set. The character in character element is a gra
escaped (eg \]) character.

character_class::=‘[‘ character_element { character_element } ‘]’

character_element::=character
|character ‘-’ character

3.0.0.6 String Literals

String literals begin and end with (double) quote characters, as in the example “this is a quoted string
embedded (double) quote must be escaped, as in “this example has an embedded quote \”. “

3.0.0.7 Integers

Integers include digits and “_”, however an integer must begin with a digit and is always interpreted in ba

3.0.0.8 Identifiers

Identifiers include lower-case characters, upper-case characters, digits and ‘_’, however an identifier may
begin with a digit nor an “_” character.
VIVA Final Report (Page 40)

afrl
36

Lexical and Syntactic Specification Grammar

. The
low-
s, how-

in the
e times.

ne or
fication
e defini-
hier-

ent’s

ement
cursive
Grammar

This section describes the complete grammar used to specify VIVA lexical and syntactic specifications
specification format combines lexical and syntactic information, inter-mixed, within a single file. In the fol
ing grammar, lexemes introduced above are shown in bold. Comments can occur between any two lexeme
ever they are not explicitly shown in the grammar (to improve clarity). Isolated character literals used
grammar are quoted (quotes do not appear in the actual file). Productions in braces can occur zero or mor
Productions in square brackets can occur zero or once.

3.0.0.9 Specification Files

Most useful VIVA lexical and syntactic specifications consist of many specification elements, contained in o
more specification files. Each specification file consists of at least one specification element. Some speci
elements define declarators which are subsequently referenced by other specification elements. Since th
tion must precede use in VIVA specifications, the partial ordering of some specification elements within the
archy of file inclusions is significant.

specification_file::=specification_element { specification_element } <EOF>

Each specification element has a specific form, identified by the ‘#’ symbol, followed by a reserved word identi-
fying the specific form of the specification element. The specific form determines the specification elem
structure, ending with the ‘;’ symbol. Only program fragments may include embedded ‘;’ symbols. The ‘;’
symbol terminating the program fragment is determined by the nesting of ‘{‘ and ‘}’ symbol pairs.

The forms of specification elements defined by the VIVA lexical and syntactic specification grammar are:

specification_element::=include_element
|program fragment
|start_element
|separator
|control_flow_function_element
|terminal_production
|nonterminal_production
|enumeration_declaration
|global_program_text

A detailed definition of each appears in the following sections:

3.0.0.10 Include Specification Elements

Include elements provide for the textual substitution of a file’s contents at the point where the include el
occurs in the input specification. Includes may be nested (include appears in an included file), however re
VIVA Final Report (Page 41)

afrl
37

Test Generator Language Specifications

cursive

ithin
tory

iority).

nts are
y use of

thin
section

to any
m frag-
strategy

eclara-

should
-termi-

ification
includes are disallowed. Since the same file can be know by many different aliases within a file system, re
includes may not be detected in all cases.

include_element::=#includepath_and_file_name_string_literal ‘;’

Within the include element, the string denotes the file to be included. If a fully qualified path is not given w
the string, the specified file should be found in either the current working directory (first priority) or the direc
in which the file containing this include element occurred, possibly using a qualified pathname (second pr

3.0.0.11 Program Fragment Elements

Program fragments provide for inserting fragments of program code into the specification file. The fragme
inserted by textual substitution of the <language_dependent> section when subsequently referenced, b
the identifier (declarator), later in the specification file. During textual substitution, the#program, declarator,
optional language identifier, outer brackets and closing semicolon are elided.

program_fragment_element
::=#program declarator_identifier
[language_identifier] program_text ‘;’

program_text::= ‘{‘ <language dependent> ‘}’

The language identifier denotes the language used by the program fragment. By default, the language isCPlus-
Plus (case insensitive); support forJAVA program fragments is expected. Other than matching brackets wi
the language dependent section while looking for the concluding outer bracket, the language dependent
may contain any constructs accepted by the compiler denoted by the programming language specifier.

For C++ program fragments, the language dependent section is inserted into a function having visibility
parameters of the element into which it is inserted and any preceding declarations inserted by prior progra
ments inserted into the same element. For example, program fragments inserted to provide an element’s
may include declarations used to form the element’s constraints.

Global program text is inserted at the top of the output source file. It logically succeeds the enumeration d
tions.

3.0.0.12 Start Element

The start element identifier refers to one of the non-terminal elements at which language production
begin. In the absence of a start element, the first non-terminal element which is not used by any other non
nal element becomes the start symbol. When the start element is inferred, tools processing the spec
file(s) must clearly identify the inferred starting symbol.
VIVA Final Report (Page 42)

afrl
38

Lexical and Syntactic Specification Grammar

another
a mal-

aracter
ay be

orizontal
an one

dle a full
n bias-

guage
all site
gical

es are
char-
racters

n unde-
start_element::=#startidentifier ‘;’

3.0.0.13 Separator Elements

Separator elements denote the set of characters which may be used to distinguish one lexical token from
under language generation conditions under which the absence of a separator character would result in
formed language production. For example, two identifiers generated sequential without a separator ch
would result in a malformed language production resembling a single identifier. Anywhere one separator m
inserted, more than one separator may be inserted. In the absence of a separator element, the blank, h
tab, vertical tab and new line characters are used. It is a reported error if a specification contains more th
separator element denoting different separator character classes.<< this needs to be expanded to han
production, so comments can be considered as seperator. Also optional flow function to provide selectio
ing for separator selection.>>

separator::=#separator character_class ‘;’

3.0.0.14 Control Flow Function Elements

Control flow function elements define mechanisms determining control flow among either alternative lan
productions or iteration of a single language production. Actuals associated with formal parameters at a c
provide the function’s evaluation context. The function’s return value either denotes an alternative via lo
position or enables continued iteration via a non-zero value.

Various alternatives are given a position starting with 1 assigned to the first alternative. If the alternativ
denoted by items and vertical bars (‘|’), the first item is given position 1. If the alternatives are given by a
acter class, positions are associated with the underlying character set, not the order in which the cha
appear in the character class. It is an error, reported at runtime, if the function returns a value denoting a
fined alternative.

control_flow_element::=#function
declarator_identifier
‘ (‘ [parameter_declaration { ‘,’ parameter_declaration }] ‘)’
return_type_identifier
‘:’
{ program_fragment_identifier }
‘;’

parameter_declaration::=type_identifier
parameter_declarator_identifier
[‘=’ initial_value_program_fragment_identifier]
VIVA Final Report (Page 43)

afrl

afrl
39

Test Generator Language Specifications

ously
he type
e con-

haracter

eration
r iden-

ion.

xt termi-
quali-

for all
r non-

specifi-
ctive at

lement
nd ref-
terminals
The return_type_identifier, program_fragment_identifier (if any) and type_identifiers (if any) must be previ
defined in a program fragment element. The language associated with the program fragment containing t
declarations and all program fragment identifiers must match. The return type identifier must denote a typ
vertible to an unsigned integer. Common return types include signed integers, enumerated types, and c
types.

3.0.0.15 Enumeration Declarations

Enumeration declaration elements introduce enumeration declarations in the output source. One enum
with the declarator “Language” is required before any language qualifier elements. The language specifie
tifier in the language qualifier element must be a enumeration tag in the Language enumeration declarat

enumeration_declaration::=#enumeration
enumeration_declarator_identifier :
enumeration_tag_identifier {, enumeration_tag_identifier }
;

3.0.0.16 Language Qualifier Elements

Language qualifier elements establish the dialect(s) of the language being tested associated with the ne
nal or non-terminal element. A given terminal or non-terminal may be preceded by zero or more language
fiers. In the absence of any language qualifier, the terminal or non-terminal is assumed to be valid
language dialects. If one or more language qualifiers precede the terminal or non-terminal, the terminal o
terminal may only occur in a language production if the language specifier matches one of the language
ers active in the tool reading the VIVA language specification. More than one language specifier may be a
the same time.

Each language specifier includes one or more strings referencing the following terminal or non-terminal e
back to the applicable language specification. The string’s body takes the form of a document name, ‘:’, a
erence within the document. These strings are used to develop comments and other messages relating
or non-terminals back to the applicable language reference manuals.

language_qualifier::=#language language_specifier_identifier
string { ‘,’ string }
‘ ;’

3.0.0.17 Association Lists
VIVA Final Report (Page 44)

afrl
40

Lexical and Syntactic Specification Grammar

of the
ram-

refer-
guage as
eing

roduc-
nera-

to ini-

ich no
ing pro-
Association lists provide the bindings at a control flow function call site between actual values and formals
control flow function. Association is strictly positional; the first actual is associated with the first formal pa
eter and so on.

association_list::=‘(‘ association_element { ‘,’ association_element } ‘)’

Actual values include (previously declared) identifiers denoting a value, integer literals, string literals, and
ences to previously declared program fragments. The program fragment must have the same source lan
the control flow function associated with the call site (but may differ from that of the control flow function b
called).

association_element::=identifier
|integer
|string_literal
|‘{‘ program_fragment_identifier ‘}’

3.0.0.18 Productions
Productions may be terminal (lexemes) or non-terminal (defined at least partially in terms of other pro-
ductions).

production::= terminal_production
|nonterminal_production

3.0.0.19 Terminal Production

Terminal productions denote single lexemes to be emitted during language generation. A given terminal p
tion within the VIVA specification may result in generation of many different lexemes during language ge
tion, based on the inherited parameter values and subsequent evaluation of flow functions.

Each terminal production is declared by an identifier. This identifier is subsequently used in a non-terminal
tiate generation of a terminal production lexeme into the language production.

terminal_element::={ language_qualifier }
#terminal
declarator_identifier
‘ (‘ [parameter_declaration { ‘,’ parameter_declaration }] ‘)’
‘ :’
 terminal_item { terminal_item }
‘ ;’

Lexeme formation is defined by zero or more terminal items (the null lexeme is a degenerate case in wh
characters are added to the language production). One or more terminal items may be encountered dur
VIVA Final Report (Page 45)

afrl
41

Test Generator Language Specifications

termi-
rence.

by an
eval-
rs. In
n pro-

denti-
con-
noting
o-ran-
each

func-
on in
nction

omain

to the
double

ters are
nt.
duction. Each terminal production is in turn defined either as a list of one or more alternatives, an iterated
nal production, a character class, a specific character literal, a string or a program fragment inserted by refe

terminal_item::=‘(‘ terminal_item { ‘|’ terminal_item } ‘)’
[‘@’ flow_function_identifier association_list]
|character_class
[‘@’ flow_function_identifier association_list]
|character_literal
|string_literal
|‘<‘ program_identifier ‘>’
|program_text

A list of alternatives, denoted by surrounding parenthesis and intervening vertical bars, may be followed
ampersand (‘@’), flow function identifier, and parameter association list. If a flow function clause is given,
uation of the flow function in the context of the association list denotes which alternative production occu
the absence of a flow function clause the VIVA generation tool synthesizes a pseudo-random flow functio
ducing a value within the domain of the alternative productions.

An iterator, denoted by surrounding parenthesis, may be followed by an ampersand (‘@’), flow function i
fier, and parameter association list. If a flow function clause is given, evaluation of the flow function in the
text of the association list either results in a 0 value denoting no further iterations or a non-zero value de
continued iteration. In the absence of a flow function clause the VIVA generation tool synthesizes a pseud
dom flow function producing a value allowing a random but gradually increasing number of iterations for
call to the flow function.

A character class, denoted by surrounding square brackets, may be followed by an ampersand (‘@’), flow
tion identifier, and parameter association list. If a flow function clause is given, evaluation of the flow functi
the context of the association list denotes which character production occurs. In the absence of a flow fu
clause the VIVA generation tool synthesizes a pseudo-random flow function producing a value within the d
of the character set productions.

The character and string literal result in the generator directly emitting the specified character or string in
language production. Although the character literal must be quoted in the specification, neither single nor
quotes appear in the emitted language production.

Finally, a program fragment may be inserted at the point where any terminal item may appear. No charac
added to the language production by the program fragment unless explicitly done by the program fragme

3.0.0.20 Non-Terminal Production
VIVA Final Report (Page 46)

afrl
42

Lexical and Syntactic Specification Grammar

non-ter-
lan-

r non-

by an
eval-
rs. In
n pro-

denti-
con-
noting
o-ran-
each
Non-terminal productions denote lexemes sequences to be emitted during language generation. A given
minal production within the VIVA specification may result in generation of many different lexemes during
guage generation, based on the inherited parameter values and subsequent evaluation of flow functions.

Each non-terminal production is declared by an identifier. This identifier may be subsequently used by othe
terminals to initiate generation of a non-terminal production into the language production.

nonterminal_production::={ language_qualifier }
#nonterminal
declarator_identifier
‘ (‘ [parameter_declaration { ‘,’ parameter_declaration }] ‘)’
‘ :’
non_ terminal_item {non_ terminal_item }
‘ ;’
non_terminal_item::=‘(‘ non_terminal_item { ‘|’ non_terminal_item } ‘)’
[‘@’ flow_function_identifier association_list]
|character_class
[‘@’ flow_function_identifier association_list]
|nonterminal_production_identifier association_list
|terminal_production_identifier association_list
|character_literal
|string_literal
|‘<‘ program_identifier ‘>’

|program_text

A list of alternatives, denoted by surrounding parenthesis and intervening vertical bars, may be followed
ampersand (‘@’), flow function identifier, and parameter association list. If a flow function clause is given,
uation of the flow function in the context of the association list denotes which alternative production occu
the absence of a flow function clause the VIVA generation tool synthesizes a pseudo-random flow functio
ducing a value within the domain of the alternative productions.

An iterator, denoted by surrounding parenthesis, may be followed by an ampersand (‘@’), flow function i
fier, and parameter association list. If a flow function clause is given, evaluation of the flow function in the
text of the association list either results in a 0 value denoting no further iterations or a non-zero value de
continued iteration. In the absence of a flow function clause the VIVA generation tool synthesizes a pseud
dom flow function producing a value allowing a random but gradually increasing number of iterations for
call to the flow function.
VIVA Final Report (Page 47)

afrl
43

Test Generator Language Specifications

ist flow
lection

func-
on in
nction

omain

to the
double

ters are
ent.<<
The mechanism that is used for a flow function depends on the enclosed structure. Note that alternative l
functions return an integer that is a selection amongst the alternatives, while iterators return a binary se
(continue or stop). The alternative values are zero origin.

A character class, denoted by surrounding square brackets, may be followed by an ampersand (‘@’), flow
tion identifier, and parameter association list. If a flow function clause is given, evaluation of the flow functi
the context of the association list denotes which character production occurs. In the absence of a flow fu
clause the VIVA generation tool synthesizes a pseudo-random flow function producing a value within the d
of the character set productions. The selection is zero origin.

The character and string literal result in the generator directly emitting the specified character or string in
language production. Although the character literal must be quoted in the specification, neither single nor
quotes appear in the emitted language production.

Finally, a program fragment may be inserted at the point where any terminal item may appear. No charac
added to the language production by the program fragment unless explicitly done by the program fragm
need to specify how a fragment inserts characters into the language production>>
VIVA Final Report (Page 48)

afrl
44

Specification Constraints

al and
mmon
differ-
rammar

hanism
h front-
odified

.

editor

a
which
wledge
nitive

on / gen-

ses a
tes into
such as
the call
es it is

eters, a
mptions
tenance
hanism
meter
istica-
e.
Specification Constraints

Although the VIVA lexical and syntactic grammar permits a unique parameter declaration for each termin
non-terminal, for consistency FTL Systems has chosen to write all terminals and non-terminals with a co
parameter declaration list (potentially augmented for a given production). This section describes the four
ent kinds of constraints which are propagated, as parameters, up and down the frontend specification g
described in the Section (See “Lexical and Syntactic Specification Grammar” on page 39.):

Strategy Constraints (strategy_in, strategy_out),

Kind Constraints (kind_in, kind_out),

Type Constraints (subtype_in, subtype_out), and

Value Constraints (value_in, value_out).

In order to realize a common front-end specification behavior despite a variety of parameter passing mec
using in the underlying implementation language, each assertion parameter occurs exactly twice in eac
end specification grammar rule (first as a parameter value passed into the rule, then as the possibly m
value returned). Constraints must appear in the order given above and all rules must have all constraints

Placing the above constraints on all front-end specification grammarsdoesresult in many parameters being
passed without usage by the test generator. However with the wide-spread availability of cut-and-paste

functionality and even selective display masking of repetitive parts1, the cost of generating and maintaining
canonical signature is minimal. With an effectively designed test generator implementation, parameters
are not actually used by the caller need not contribute to test generator overhead (assuming a global kno
of all specification rules; the rule call tree). Having a single production signature for all rules eases the cog
task of rule generation (less to go wrong) and eases design of interchangeable specifications and asserti
erator implementations (since specification need not utilize the same set of rules).

In a like fashion, repeating each assertion twice (once with “mode” in and once with “mode” out) addres
wide variety of test generator implementation languages. Generally each rule in the specification transla
one or more subprogram calls in the test generator implementation. Some implementation languages,
C++, permit subprogram (function) reference parameters. These parameters permit the callee to alter
value so that the changes are visible to the caller on return. Sometimes this is useful, however at other tim
useful to have both the original call value as well as the return value available. Even with reference param
single parameter requires development synchronization between the caller and callee so that any assu
made by the caller concerning changes to the reference value remain true throughout the software main
cycle. Other implementation languages permit varying pass by reference mechanisms or lack such mec
entirely. A sufficiently clever test generator creation tool can employ pass by reference of a single para
(rather than two parameters) through visibility into the entire tree of rules and actions. The cost of this soph
tion isunlikely to be worth the gain in test generation performance and thus is not contemplated at this tim

1. Such as Emacs’ outline mode employs.
VIVA Final Report (Page 49)

afrl
45

Test Generator Language Specifications

argely
e

on may

as
eady

rs can
s:

class:
Strategy Constraints

Strategy constraints guide a rule in the selection of correct or incorrect productions. There are two, l
orthogonal aspects to strategy constraints: thecertainty with which an emitted production is in error and th
kind of error which might be generated.

Since the certainty with which an error is generated has several mutually exclusive values, an enumerati
be used, VVIAStrategyCertainty:

enumVIVAStrategyCertainty {
IS_LEGAL,
MUST_BE_LEGAL,
MAY_BE_LEGAL,
MAY_BE_ERRONEOUS,
MAY_BE_IN_ERROR,
MUST_BE_ERRONEOUS,
MUST_BE_IN_ERROR,
IS_IN_ERROR };

Certainty values beginning withMUST_ or MAY_ are propagated downward in the rule hierarchy, where
those beginning withIS_ are propagated upward in the rule hierarchy, reflecting decisions which have alr
been made.

If an error is generated by a rule, many different kinds of errors may be permissible. In general these erro
be enumerated (as VIVAStrategyKind) but cannot be represented as mutually exclusive parameter value

enumVIVAStrategyKind {
LEXICAL_ERROR ,
SYNTAX_ERROR,
TYPE_ERROR,
SUBTYPE_ERROR,
AMBIGUOUS_OVERLOAD_ERROR ,
NO_VALID_OVERLOAD_ERROR ,
PROCESS_COMMUNICATION_ERROR ;
SOLUTION_ERROR };

Combining the certainty and strategy into a single composite VIVAStrategy type yields the VIVAStrategy

classVIVAStrategy
 {
public:
VIVAStrategyCertainty certainty;
VIVA Final Report (Page 50)

afrl
46

Specification Constraints

con-
r exam-

ype and
Boolean
is(VIVAStrategyKind v);
// Following methods have side-effects on VIVAKind value...
void
assert_is(VIVAStrategyKind v);
void
assert_is_not(VIVAStrategyKind v);

protected:
};

Kind Constraints

Kind constraints describe general characteristics of the rule production. Like strategy kinds, VIVAKind
straints can be enumerated, however a single rule parameter may match zero or more kind constraints. Fo
ple the expression being produced may be both an rval and a signal. Thus the same enumerated t
subsequent composite class used to represent strategies may be used for constraints:

enumVIVAKinds {
NO_ASSERTION,
IS_RVAL,
IS_LVAL,
IS_LITERAL,
IS_CONSTANT,
IS_VARIABLE,
IS_SIGNAL,
IS_GUARDED_SIGNAL,
IS_FILE,
IS_DYNAMIC_OBJECT,
IS_TERMINAL,
IS_QUANTITY,
IS_ENTITY,
IS_ARCHITECTURE,
IS_CONFIGURATION,
IS_PACKAGE,
IS_COMPONENT,
IS_BLOCK,
IS_PROCESS,
IS_LOOP,
IS_GENEATE,
IS_COMPONENT_CONFIGURATION,
IS_SCALAR_TYPE,
VIVA Final Report (Page 51)

afrl
47

Test Generator Language Specifications

aints are
ther
e the

nerally
AIRE

IL_IIR
IS_DISCRETE_TYPE,
IS_INTEGER_TYPE,
IS_BOOLEAN_TYPE,
IS_BIT_VECTOR_TYPE,
IS_REAL_TYPE,
IS_TIME_TYPE,
IS_FILE_TYPE,
IS_FP_TYPE,
IS_NATURE,
IS_UNCONSTRAINED_ARRAY,
IS_CONSTRAINED_ARRAY,
IS_RECORD_TYPE,
IS_RECORD_NATURE,
IS_LOCALLY_STATIC,
IS_GLOBALLY_STATIC,
IS_NON_STATIC,
IS_UNIQUELY_DEFINED };

class VIVAKind
{
Boolean
is(VIVAKinds v);
void
assert_is(VIVAKinds v);
void
assert_is_not(VIVAKinds v);
protected:
}

Type Constraints

Type constraints represent a set of constraints on one or more types associated with a rule. Type constr
represented as a list of AIRE IIR_TypeDefinition objects using a (new) IIR_TypeDefinitionList following o
AIRE IIR lists. The absence of a type definition assertion is denoted by a NIL_IIR_TypeDefinition. Se
AIRE IIR specification (http://www.ftlsystems.com) for further details.

Value Constraints

Value constraints represent a value produced by an expression production. Although values are not ge
used for front-end testing, they are most readily included along with types. Values are represented as
IIR_Literal, IIR_Expression and IIR_Declaration objects. The absence of an expression is denoted by a N
value. See the AIRE IIR specification (http://www.ftlsystems.com) for further details.
VIVA Final Report (Page 52)

afrl
48

CHAPTER 4 Sequential Extrinsic
Functional Test
Generation
VIVA Final Report (Page 53)

afrl
49

Sequential Extrinsic Functional Test Generation

les. It
knowl-

E) as
vide the
and the

at has
r test is
seman-

ge con-
dition of
ral non
tructs to

age con-
lt of exe-
the type
riable,

essions
paths.

r to iden-

hine is
Introduction

This chapter describes the functional test generator(FTG) that produces the executable tests’ VIVA fi
explores the functional paradigm used to describe the execution semantics and how we map that semantic
edge to generation of the specific tests. It also describes how to extend FTG to create more tests.

FTG uses the Advanced Intermediate Representation with Extensibility/Common Environment (AIRE/C
the starting point for its knowledge base. AIRE/CE classes are augmented or extended as needed to pro
knowledge necessary to create the tests. FTG generates tests for libraries. These libraries under test
libraries referred to by the libraries under test must be analyzed into an AIRE/CE compliant analyzer th
been augmented by FTG. FTG generates executable tests for the libraries under test. If the library unde
the standard library, then additional tests are created to cover all language constructs that have execution
tics that are not covered by the VIVA Liveliness tests.

Each language construct has a set of FTG rules that describe to FTG how to create tests for that langua
struct. These rules are a combination of C++ classes and C preprocessor defines that allows for easy ad
more rules. A rule may invoke a series of other rules. Each test is added to AIRE/CE in a test library. Seve
error tests may be combined into one test. The test library is fleshed out with the necessary language cons
provide a complete executable description.

Data objects are the usual language construct used to detect proper execution. Data objects are a langu
struct that are described by a tuple of value, name, type, and kind. Data objects change value as the resu
cution of expressions and statements. The type of data objects are chosen from the types defined by
system. It includes test defined types as well as predefined types. The kind of object is selected from va
shared variable, or signal. The FTG creates objects and values to test the modification of values by expr
and statements. It examines standard subprogram and process bodies to create input data that tests all

The other major language construct used is assert. Assert is used to state conditions about data objects, o
tify execution paths that should not be executed.

FTG does not test basic computer function. For example, we do not claim to test that the adder of a mac
correct, we only test that the addition operation does add.
VIVA Final Report (Page 54)

afrl
50

Type System

e target

) and
(array

de on the

e testing

limit.

TG
ests.

assign-

l types

.
ditions

nal test
Type System

FTG will generate a series of tests for each type described in the knowledge base and contained in th
library.

There are three kinds of scalar types in VHDL. There are enumerations(Bit), ordinal (Integer and Time
arithmetic (Real). Each of these require a different treatment for coverage of their uses. Aggregate types
and record) are treated as a collection of the scalar types for test values. Access types are treated as a mo
types they access.

Each scalar variable test has an equivalent test using an access to the types involved. For instance if we ar
an array index type, then we should repeat that test with an access to array.

FTG will create tests to ensure bounds checking on assignment and array indexing.

Type attributes are checked for each type. Error tests include boundary tests like T’HIGH’SUCC.

4.0.0.1 Enumeration value selection

FTG will exhaustively check an enumeration type of X elements when X is less than a run time defined

That is each binary operation will have 2X tests. For enumerations that are too large to exhaustively test, F
will cover the output domain of operations and use principles like transitivity of ’\’ to reduce the number of t

If an enumeration type is a subtype of a larger set of enumerations, tests will be created to ensure that the
ment of enumeration values outside the subset are error.

Package standard will also create a subtype of CHARACTER to test subtypes and resolution functions.

Ordinal value selection

Ordinal values can be mapped to integers, and arithmetic operations are valid. VHDL integer and physica
are ordinal.

• Operations

FTG checks ordinal operations with 5 values. ‘LOW - 1, ‘LOW, random middle value, ‘HIGH, ‘HIGH +1
Operations will produce errors in some of these cases. Error tests need to check for disqualifying con
like if a type wraps (‘HIGH+1 = ‘LOW), then var:= ‘HIGH + ’HIGH will not result in an error.

• Indices

Ordinal values as indices should have the same 5 values as operations, but also may have an additio
structured around induction.
VIVA Final Report (Page 55)

afrl
51

Sequential Extrinsic Functional Test Generation

exact

, there

eration
Package standard will create a small integer type to test range checking.

Arithmetic value selection

Arithmetic values approximate real numbers. VHDL float is an example. As they are an approximation,
specification of the results of operations is not possible. Results tested to be within a range.

Composite value selection

Composite values are built up from the value selection for their elements.

4.0.0.2 Array value selection

The value of array elements will be taken from the type of the element and the operation to be tested. Also
will be array tests that revolve around the values for the index.

4.0.0.3 String value selection

Strings are one dimensional arrays indexed by a natural integer index whose element type is a enum
whose tags are all one character. Strings have the same value selection criteria as arrays.

4.0.0.4 Record value selection

Record values will be a cross product of the test values for the types of the record elements.
VIVA Final Report (Page 56)

afrl
52

Objects

ested as
rocess,
Objects

Each type is tested with both variable and signal objects. An access to an object of non access type is t
well. The tests are repeated with the different kind of objects. Variable objects may be tested in the same p
while signal objects are tested by another process.
VIVA Final Report (Page 57)

afrl
53

Sequential Extrinsic Functional Test Generation

. It back-
o inputs
urns the
straint
this, a
updated.)

creat-
. Some
Subprograms--operations, functions, and procedures

FTG tries to cover the outputs of a subprogram based on the type. It creates a set of desired output states
tracks through the statements of a subprogram creating a set of constraints that eventually are reflected t
or shared variables. These constraints are used to select values. (i.e. we have a simple function that ret
sum of inputs A and B. For a given desired output value X, A gets the constraint of X-B and B gets the con
of X-A. A and B are selected from these constraints and their types. In a not fully constrained system like
when a random value is chosen, the most constrained is randomly selected and the set of constraints is

FTG tries to cover all execution paths through a subprogram. It does this by analyzing the control flow and
ing input data to exercise the pathways. If some code is unreachable, it will print out a diagnostic message
paths may not be coverable, because of mutual exclusion.
VIVA Final Report (Page 58)

afrl
54

Processes and Concurrent

ted from
ucted as
ral paths
al state.

hat tests

ths and
for com-
Processes and Concurrent

Processes are analyzed similar to subprograms. Input/Output signals and shared variables are detec
expression reference and assignment statements within a process. Input values over time are constr
needed to set the internal state of a process to create the proper traversals and output values. Seve
through a process may be covered by one test, if several invocations are needed to create the proper intern

Processes are created to evaluate expected signal changes.

Alternate Forms

Where there are alternate syntax forms to represent the same execution, then a test will be generated t
each alternate form. A test of a concurrent signal assignment will also test the equivalent process.

Waveforms

Standard components with state will require a sequence of input signal values to cover the sequential pa
values of output. The same process used to create a sequence of calls for a subprogram with state is used
ponents with state.
VIVA Final Report (Page 59)

afrl
55

Sequential Extrinsic Functional Test Generation

valida-
Weaknesses

There are several weaknesses to this body of tests and any VHDL implementation should supplement this
tion suite with executable tests of their own.

• Machine dependencies

• Undefined behaviors

• Non portable constructs

• Capacity

• Optimizations
VIVA Final Report (Page 60)

afrl
56

Deliverables
Deliverables

The FTG source: a set of C++ files and a Makefile that compile into an AIRE application.

Documentation on how to add new rules to FTG.

VIVA grammar files for VHDL package standard which includes testing of the base language.
VIVA Final Report (Page 61)

afrl
57

Sequential Extrinsic Functional Test Generation
Future

VHDL-AMS
VIVA Final Report (Page 62)

afrl
58

FTG Rules

database
 FTG.

quential
ries are

nition.

cate-
of the
s to.
all”,
be
.

FTG Rules

FTG rules are the basis of the system. New rules can be added to create tests or add objects to the AIRE
for other rules. The effect of rules will be different depending on where they are placed in the structure of

FTG program structure

A rule falls into one of several categories. The categories correspond to one of the test areas: type, se
statements, concurrent statements,...====more===. The category order is important, as the rule catego
processed in order

• type rules

Type rules create new types and subtypes.

• sequential rules

• concurrent rules

FTG rule creation

New tests are added to FTG by adding rules. A rule is a C++ class derived from FTG_Rule, and a rule defi
Rules are defined to FTG in several .rul files. These are:

• ftg_type.rul

• ftg_seq.rul

• ftg_conc.rul

• more to come

Rule definition syntax is RULE(rule_category,rule_name,ir_object_kind, test_library_name, ...). The rule
gory is a check on the file it is included in (type rules in the ftg_type.rul file...). The rule_name is the name
C++ class that implements the rule. ir_object_kind is the IR_Kind of AIRE/CE object that this rule applie
The test_library_name is the library to find AIRE/CE objects to pass to the rule. If the library name is “ftg_
then the rule will be applied to objects in all libraries. If the library name is “ftg_any” then the rule will
applied to all libraries under test. These special library names allow a common rule set for many libraries

class FTG_Rule {

public:

 virtual IR_Int32 invoke(IIR *iir_object)=0;

};
VIVA Final Report (Page 63)

afrl
59

Sequential Extrinsic Functional Test Generation

ne of
atic

.

Rules are invoked for each object in the test_library_name of the iir_object_kind, if test_library_name is o
the libraries under test. Each rule will be invoked with a null object first. This will allow the creation of st
data or other initialization, or the addition of objects to the database.

Rules may add new objects to the FTG_adjunct library, or to either the FTG_good or FTG_error libraries
VIVA Final Report (Page 64)

afrl
60

CHAPTER 5 VIVA Installation Guide
e-

t.
tate-
_exec
1. Make sure that perl is in the path

2. Place the following files in the perl directory. The directory is usually on UNIX /usr/local/lib/perl5 or som
thing like that.

Register.pm

Viva_msg.pm

VIVA_comm.pm

3. Place the following file in the home directory.

TestGen.pl

TUT.pl

DemoWin.pl

viva.rc

viva_(platform)_tut.rc (i.e. viva_solaris_tut.rc)

viva_sparc

4. Edit TestGen.pl parameters at the top of the file, under the TestGen Wrapper Input Interface commen
Change $site_wrapper to the directory where TUT.pl is located. Change the blaa bla in the following s
ment open($FH_viva_config, “blaa blaa/viva.rc”) to a path where viva.rc is located. Also, change $TG
and $graphics to the same directory.
VIVA Final Report (Page 65)

afrl
61

VIVA Installation Guide
VIVA Final Report (Page 66)

afrl
62

afrl
THIS PAGE WAS INTENTIONALLY LEFT BLANK

CHAPTER 6 Annotated Bibliography
-

Robert S. Boyer and J. Strother Moore,A Computational Logic Handbook, Perspectives in Computing, Aca-
demic Press, 1988 (ISBN 0-12-122952-1).

C.A.R. Hoare and J.C. Shepherdson,Mathematical Logic and Programming Languages, International Serices
in Computer Science, Prentice/Hall International (ISBN 0-13-561465-1).

Paul C. Jorgensen,Software Testing: A Craftsman’s Approach, CRC Press (ISBN 0-8493-7345-X).

Matthias Gulbins and Bernd Straube,Applying Behavioral Level Test Generation to High-Level Design Vali-
dation, In Proceedings of the European Design and Test Conference, 1996.

Robert M. Poston,Automating Specification-Based Software Testing, IEEE Computer Society Press, ISBN 0
8186-7531-4.
VIVA Final Report (Page 67)

afrl
63

	body.pdf
	VIVA Final Report USAF Contract Number F33615-96-C-1909
	CHAPTER 1 Implementation Overview�5
	CHAPTER 2 Interface Common to All Test Generators�23
	CHAPTER 3 Test Generator Language Specifications�37
	CHAPTER 4 Sequential Extrinsic Functional Test Generation�53
	CHAPTER 5 VIVA Installation Guide�65
	CHAPTER 6 Annotated Bibliography�67
	CHAPTER 1 Implementation Overview
	System Architecture
	FIGURE 1.� Example configuration of validation system architecture.
	FIGURE 2.� Test Administrator Architecture
	FIGURE 3.� Test Generator/Distributed Test Administrator Relationship
	FIGURE 4.� Test Site Architecture

	General Approach to Test Generation
	FIGURE 5.� Qualitative form of function production heuristics seek to minimize.
	TABLE 1. Constraint values utilized at different levels in the lexical and syntactic production h...

	Test Generators for Lexical, Syntactic and Pre-Execution Semantics
	Test Generators for Liveliness
	Test Generators for Sequential Functionality
	Test Generators for Concurrent Functionality
	General Approach to Test Administration
	Organization of Subsequent Chapters
	CHAPTER 2 Interface Common to All Test Generators

	Interface Architecture
	FIGURE 6.� Interfaces to and from test generator process

	Command Line Control Flags
	Command Stream Control Flags
	Status Stream Control Flags
	File Output Requirements
	Fault Tolerance Requirements
	Test Generator Message Format
	CHAPTER 3 Test Generator Language Specifications

	Introduction to Lexical and Syntactic Specifications
	Lexical and Syntactic Specification Grammar
	Lexemes
	3.0.0.1 Comments
	3.0.0.2 Keywords
	3.0.0.3 Delimiters
	3.0.0.4 Character_Literal
	3.0.0.5 Character Classes
	3.0.0.6 String Literals
	3.0.0.7 Integers
	3.0.0.8 Identifiers

	Grammar
	3.0.0.9 Specification Files
	3.0.0.10 Include Specification Elements
	3.0.0.11 Program Fragment Elements
	3.0.0.12 Start Element
	3.0.0.13 Separator Elements
	3.0.0.14 Control Flow Function Elements
	3.0.0.15 Enumeration Declarations
	3.0.0.16 Language Qualifier Elements
	3.0.0.17 Association Lists
	3.0.0.18 Productions Productions may be terminal (lexemes) or non-terminal (defined at least part...
	3.0.0.19 Terminal Production
	3.0.0.20 Non-Terminal Production

	Specification Constraints
	Strategy Constraints
	Kind Constraints
	Type Constraints
	Value Constraints
	CHAPTER 4 Sequential Extrinsic Functional Test Generation

	Introduction
	Type System
	4.0.0.1 Enumeration value selection
	Ordinal value selection
	Arithmetic value selection
	Composite value selection
	4.0.0.2 Array value selection
	4.0.0.3 String value selection
	4.0.0.4 Record value selection

	Objects
	Subprograms--operations, functions, and procedures
	Processes and Concurrent
	Alternate Forms
	Waveforms

	Weaknesses
	Deliverables
	Future
	VHDL-AMS

	FTG Rules
	FTG program structure
	FTG rule creation
	CHAPTER 5 VIVA Installation Guide
	1. Make sure that perl is in the path
	2. Place the following files in the perl directory. The directory is usually on UNIX /usr/local/l...
	3. Place the following file in the home directory.
	4. Edit TestGen.pl parameters at the top of the file, under the TestGen Wrapper Input Interface c...

	CHAPTER 6 Annotated Bibliography

